A Roles-based Competency Framework for Integrating Artificial Intelligence (AI) in Engineering Courses
- URL: http://arxiv.org/abs/2410.12796v1
- Date: Sat, 28 Sep 2024 19:13:14 GMT
- Title: A Roles-based Competency Framework for Integrating Artificial Intelligence (AI) in Engineering Courses
- Authors: Johannes Schleiss, Aditya Johri,
- Abstract summary: We propose a framework for integrating AI into disciplinary engineering courses and curricula.
The use of AI within engineering is an emerging but growing area.
We discuss the challenges in implementing the framework and emphasize the need for an embedded approach.
- Score: 0.13154296174423616
- License:
- Abstract: In this practice paper, we propose a framework for integrating AI into disciplinary engineering courses and curricula. The use of AI within engineering is an emerging but growing area and the knowledge, skills, and abilities (KSAs) associated with it are novel and dynamic. This makes it challenging for faculty who are looking to incorporate AI within their courses to create a mental map of how to tackle this challenge. In this paper, we advance a role-based conception of competencies to assist disciplinary faculty with identifying and implementing AI competencies within engineering curricula. We draw on prior work related to AI literacy and competencies and on emerging research on the use of AI in engineering. To illustrate the use of the framework, we provide two exemplary cases. We discuss the challenges in implementing the framework and emphasize the need for an embedded approach where AI concerns are integrated across multiple courses throughout the degree program, especially for teaching responsible and ethical AI development and use.
Related papers
- Integrating AI Education in Disciplinary Engineering Fields: Towards a System and Change Perspective [0.21262546447395844]
Building up competencies in working with data and tools of Artificial Intelligence (AI) is becoming more relevant across disciplinary engineering fields.
While the adoption of tools for teaching and learning, such as ChatGPT, is garnering significant attention, integration of AI knowledge, competencies, and skills within engineering education is lacking.
This practice paper introduces a systems perspective on integrating AI education within engineering through the lens of a change model.
arXiv Detail & Related papers (2024-09-28T18:02:17Z) - AI Literacy for All: Adjustable Interdisciplinary Socio-technical Curriculum [0.8879149917735942]
This paper presents a curriculum, "AI Literacy for All," to promote an interdisciplinary understanding of AI.
The paper presents four pillars of AI literacy: understanding the scope and technical dimensions of AI, learning how to interact with Gen-AI in an informed and responsible way, the socio-technical issues of ethical and responsible AI, and the social and future implications of AI.
arXiv Detail & Related papers (2024-09-02T13:13:53Z) - AI for non-programmers: Applied AI in the lectures for students without programming skills [0.0]
This work presents a didactic planning script for applied AI.
The didactic planning script is based on the AI application pipeline and links AI concepts with study-relevant topics.
An example lecture series for master students in energy management shows how AI can be seamlessly integrated into discipline-specific lectures.
arXiv Detail & Related papers (2024-02-06T17:26:24Z) - Transdisciplinary AI Education: The Confluence of Curricular and
Community Needs in the Instruction of Artificial Intelligence [0.7133676002283578]
We examine the current state of AI in education and explore the potential benefits and challenges of incorporating this technology into the classroom.
This paper delves into the AI program currently in development for Neom Community School and the larger Education, Research, and Innovation Sector in Neom, Saudi Arabia s new megacity under development.
arXiv Detail & Related papers (2023-11-10T17:26:27Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
This chapter focuses on differentiable intelligence and on-board machine learning.
We discuss a few selected projects originating from the European Space Agency's (ESA) Advanced Concepts Team (ACT)
arXiv Detail & Related papers (2022-12-10T07:49:50Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - An Experience Report of Executive-Level Artificial Intelligence
Education in the United Arab Emirates [53.04281982845422]
We present an experience report of teaching an AI course to business executives in the United Arab Emirates (UAE)
Rather than focusing only on theoretical and technical aspects, we developed a course that teaches AI with a view to enabling students to understand how to incorporate it into existing business processes.
arXiv Detail & Related papers (2022-02-02T20:59:53Z) - Stakeholder Participation in AI: Beyond "Add Diverse Stakeholders and
Stir" [76.44130385507894]
This paper aims to ground what we dub a 'participatory turn' in AI design by synthesizing existing literature on participation and through empirical analysis of its current practices.
Based on our literature synthesis and empirical research, this paper presents a conceptual framework for analyzing participatory approaches to AI design.
arXiv Detail & Related papers (2021-11-01T17:57:04Z) - Competency Model Approach to AI Literacy: Research-based Path from
Initial Framework to Model [0.0]
Research on AI Literacy could lead to an effective and practical platform for developing these skills.
We propose and advocate for a pathway for developing AI Literacy as a pragmatic and useful tool for AI education.
arXiv Detail & Related papers (2021-08-12T15:42:32Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.