Ads Supply Personalization via Doubly Robust Learning
- URL: http://arxiv.org/abs/2410.12799v1
- Date: Sun, 29 Sep 2024 06:09:52 GMT
- Title: Ads Supply Personalization via Doubly Robust Learning
- Authors: Wei Shi, Chen Fu, Qi Xu, Sanjian Chen, Jizhe Zhang, Qinqin Zhu, Zhigang Hua, Shuang Yang,
- Abstract summary: Ads supply personalization aims to balance the revenue and user engagement, two long-term objectives in social media ads, by tailoring the ad quantity and density.
In this paper, we present a streamlined framework for personalized ad supply.
It optimally utilizes information from data collection policies through the doubly robust learning. Consequently, it significantly improves the accuracy of long-term treatment effect estimates.
- Score: 13.392289135329833
- License:
- Abstract: Ads supply personalization aims to balance the revenue and user engagement, two long-term objectives in social media ads, by tailoring the ad quantity and density. In the industry-scale system, the challenge for ads supply lies in modeling the counterfactual effects of a conservative supply treatment (e.g., a small density change) over an extended duration. In this paper, we present a streamlined framework for personalized ad supply. This framework optimally utilizes information from data collection policies through the doubly robust learning. Consequently, it significantly improves the accuracy of long-term treatment effect estimates. Additionally, its low-complexity design not only results in computational cost savings compared to existing methods, but also makes it scalable for billion-scale applications. Through both offline experiments and online production tests, the framework consistently demonstrated significant improvements in top-line business metrics over months. The framework has been fully deployed to live traffic in one of the world's largest social media platforms.
Related papers
- Click Without Compromise: Online Advertising Measurement via Per User Differential Privacy [22.38999810583601]
We introduce Ads-BPC, a novel user-level differential privacy protection scheme for advertising measurement results.
Ads-BPC achieves a 25% to 50% increase in accuracy over existing streaming DP mechanisms applied to advertising measurement.
arXiv Detail & Related papers (2024-06-04T16:31:19Z) - Small Dataset, Big Gains: Enhancing Reinforcement Learning by Offline
Pre-Training with Model Based Augmentation [59.899714450049494]
offline pre-training can produce sub-optimal policies and lead to degraded online reinforcement learning performance.
We propose a model-based data augmentation strategy to maximize the benefits of offline reinforcement learning pre-training and reduce the scale of data needed to be effective.
arXiv Detail & Related papers (2023-12-15T14:49:41Z) - Online Ad Procurement in Non-stationary Autobidding Worlds [10.871587311621974]
We introduce a primal-dual algorithm for online decision making with multi-dimension decision variables, bandit feedback and long-term uncertain constraints.
We show that our algorithm achieves low regret in many worlds when procurement outcomes are generated through procedures that are adversarial, adversarially corrupted, periodic, and ergodic.
arXiv Detail & Related papers (2023-07-10T00:41:08Z) - An End-to-End Framework for Marketing Effectiveness Optimization under
Budget Constraint [25.89397524825504]
We propose a novel end-to-end framework to directly optimize the business goal under budget constraints.
Our core idea is to construct a regularizer to represent the marketing goal and optimize it efficiently using gradient estimation techniques.
Our proposed method is currently deployed to allocate marketing budgets for hundreds of millions of users on a short video platform.
arXiv Detail & Related papers (2023-02-09T07:39:34Z) - VFed-SSD: Towards Practical Vertical Federated Advertising [53.08038962443853]
We propose a semi-supervised split distillation framework VFed-SSD to alleviate the two limitations.
Specifically, we develop a self-supervised task MatchedPair Detection (MPD) to exploit the vertically partitioned unlabeled data.
Our framework provides an efficient federation-enhanced solution for real-time display advertising with minimal deploying cost and significant performance lift.
arXiv Detail & Related papers (2022-05-31T17:45:30Z) - ItemSage: Learning Product Embeddings for Shopping Recommendations at
Pinterest [60.841761065439414]
At Pinterest, we build a single set of product embeddings called ItemSage to provide relevant recommendations in all shopping use cases.
This approach has led to significant improvements in engagement and conversion metrics, while reducing both infrastructure and maintenance cost.
arXiv Detail & Related papers (2022-05-24T02:28:58Z) - Dynamic Network-Assisted D2D-Aided Coded Distributed Learning [59.29409589861241]
We propose a novel device-to-device (D2D)-aided coded federated learning method (D2D-CFL) for load balancing across devices.
We derive an optimal compression rate for achieving minimum processing time and establish its connection with the convergence time.
Our proposed method is beneficial for real-time collaborative applications, where the users continuously generate training data.
arXiv Detail & Related papers (2021-11-26T18:44:59Z) - Arbitrary Distribution Modeling with Censorship in Real-Time Bidding
Advertising [2.562910030418378]
The purpose of Inventory Pricing is to bid the right prices to online ad opportunities, which is crucial for a Demand-Side Platform (DSP) to win auctions in Real-Time Bidding (RTB)
Most of the previous works made strong assumptions on the distribution form of the winning price, which reduced their accuracy and weakened their ability to make generalizations.
We propose a novel loss function, Neighborhood Likelihood Loss (NLL), collaborating with a proposed framework, Arbitrary Distribution Modeling (ADM) to predict the winning price distribution under censorship.
arXiv Detail & Related papers (2021-10-26T11:40:00Z) - Value Function is All You Need: A Unified Learning Framework for Ride
Hailing Platforms [57.21078336887961]
Large ride-hailing platforms, such as DiDi, Uber and Lyft, connect tens of thousands of vehicles in a city to millions of ride demands throughout the day.
We propose a unified value-based dynamic learning framework (V1D3) for tackling both tasks.
arXiv Detail & Related papers (2021-05-18T19:22:24Z) - Dynamic Knapsack Optimization Towards Efficient Multi-Channel Sequential
Advertising [52.3825928886714]
We formulate the sequential advertising strategy optimization as a dynamic knapsack problem.
We propose a theoretically guaranteed bilevel optimization framework, which significantly reduces the solution space of the original optimization space.
To improve the exploration efficiency of reinforcement learning, we also devise an effective action space reduction approach.
arXiv Detail & Related papers (2020-06-29T18:50:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.