論文の概要: ChatVTG: Video Temporal Grounding via Chat with Video Dialogue Large Language Models
- arxiv url: http://arxiv.org/abs/2410.12813v1
- Date: Tue, 01 Oct 2024 08:27:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-27 06:14:37.626637
- Title: ChatVTG: Video Temporal Grounding via Chat with Video Dialogue Large Language Models
- Title(参考訳): ChatVTG:ビデオ対話大言語モデルを用いたチャットによるビデオ時間グラウンド
- Authors: Mengxue Qu, Xiaodong Chen, Wu Liu, Alicia Li, Yao Zhao,
- Abstract要約: Video Temporal Groundingは、特定のセグメントを、与えられた自然言語クエリに対応する未トリミングビデオ内でグラウンドすることを目的としている。
既存のVTG手法は、主に教師付き学習と広範囲な注釈付きデータに依存しており、それは労働集約的であり、人間の偏見に起因している。
本稿では,ビデオ対話大言語モデル(LLM)をゼロショットビデオ時間グラウンドに利用する新しい手法ChatVTGを提案する。
- 参考スコア(独自算出の注目度): 53.9661582975843
- License:
- Abstract: Video Temporal Grounding (VTG) aims to ground specific segments within an untrimmed video corresponding to the given natural language query. Existing VTG methods largely depend on supervised learning and extensive annotated data, which is labor-intensive and prone to human biases. To address these challenges, we present ChatVTG, a novel approach that utilizes Video Dialogue Large Language Models (LLMs) for zero-shot video temporal grounding. Our ChatVTG leverages Video Dialogue LLMs to generate multi-granularity segment captions and matches these captions with the given query for coarse temporal grounding, circumventing the need for paired annotation data. Furthermore, to obtain more precise temporal grounding results, we employ moment refinement for fine-grained caption proposals. Extensive experiments on three mainstream VTG datasets, including Charades-STA, ActivityNet-Captions, and TACoS, demonstrate the effectiveness of ChatVTG. Our ChatVTG surpasses the performance of current zero-shot methods.
- Abstract(参考訳): Video Temporal Grounding (VTG) は、与えられた自然言語クエリに対応する未トリミングビデオ内で特定のセグメントをグラウンドすることを目的としている。
既存のVTG手法は、主に教師付き学習と広範囲な注釈付きデータに依存しており、それは労働集約的であり、人間の偏見に起因している。
これらの課題に対処するために,ビデオ対話大言語モデル(LLM)をゼロショットビデオ時間グラウンドに利用する新しいアプローチChatVTGを提案する。
我々のChatVTGはビデオ対話LLMを利用して多粒度セグメントキャプションを生成し、これらのキャプションを粗い時間的接地のためのクエリとマッチングし、ペア化されたアノテーションデータの必要性を回避する。
さらに,より正確な時間的接地結果を得るために,細粒度キャプションの提案にモーメントリファインメントを用いる。
Charades-STA、ActivityNet-Captions、TACoSを含む3つの主流VTGデータセットに関する大規模な実験は、ChatVTGの有効性を実証している。
私たちのChatVTGは、現在のゼロショットメソッドのパフォーマンスを上回っています。
関連論文リスト
- Training-free Video Temporal Grounding using Large-scale Pre-trained Models [41.71055776623368]
ビデオの時間的グラウンドは、与えられた自然言語クエリに最も関係のある、トリミングされていないビデオ内のビデオセグメントを特定することを目的としている。
既存のビデオ時間的ローカライゼーションモデルは、トレーニングのために特定のデータセットに依存しており、データ収集コストが高い。
本研究では,事前学習型大規模モデルの能力を活用したトレーニングフリービデオ時間グラウンド手法を提案する。
論文 参考訳(メタデータ) (2024-08-29T02:25:12Z) - Video-GroundingDINO: Towards Open-Vocabulary Spatio-Temporal Video Grounding [108.79026216923984]
ビデオグラウンドイングは、入力テキストクエリに対応するビデオ内の時間セクションをローカライズすることを目的としている。
本稿では,現在のビデオグラウンドリング手法において,オープン語彙時空間ビデオグラウンドニングタスクを導入することにより,限界に対処する。
論文 参考訳(メタデータ) (2023-12-31T13:53:37Z) - Temporal Sentence Grounding in Streaming Videos [60.67022943824329]
本稿では,ストリーミングビデオにおける時間文グラウンディング(TSGSV)の新たな課題に取り組むことを目的とする。
TSGSVの目標は、ビデオストリームと所定の文クエリの関連性を評価することである。
本研究では,(1)モデルが今後のイベントを学習することを可能にするTwinNet構造,(2)冗長な視覚的フレームを除去する言語誘導型特徴圧縮器の2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-14T12:30:58Z) - HiTeA: Hierarchical Temporal-Aware Video-Language Pre-training [49.52679453475878]
本稿では,モーメントとテキスト間の相互アライメントをモデル化するための時間対応ビデオ言語事前学習フレームワークHiTeAを提案する。
15の精確なビデオ言語理解と生成タスクに関する最先端の成果を得た。
論文 参考訳(メタデータ) (2022-12-30T04:27:01Z) - Language-free Training for Zero-shot Video Grounding [50.701372436100684]
ビデオグラウンディングは、テキストと動画を同時に理解することで、時間間隔をローカライズすることを目的としている。
最も難しい問題のひとつは、非常に時間とコストのかかるアノテーションの収集です。
ゼロショット設定におけるビデオグラウンドティングのための,シンプルかつ斬新なトレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-24T06:55:29Z) - The Elements of Temporal Sentence Grounding in Videos: A Survey and
Future Directions [60.54191298092136]
ビデオの時間文グラウンド(TSGV)は、意味不明のビデオから言語クエリに対応する時間モーメントを検索することを目的としている。
本調査では,TSGVの基本概念と今後の研究方向性について概説する。
論文 参考訳(メタデータ) (2022-01-20T09:10:20Z) - Where Does It Exist: Spatio-Temporal Video Grounding for Multi-Form
Sentences [107.0776836117313]
STVGは、トリミングされていないビデオと宣言的/解釈的な文が与えられた場合、クエリされたオブジェクトの時間管をローカライズすることを目的としている。
既存の手法では、非効率なチューブ前世代と新しいオブジェクト関係モデリングの欠如により、STVGタスクに対処できない。
本稿では,この課題に対する宣言型時間グラフ推論ネットワーク(STGRN)を提案する。
論文 参考訳(メタデータ) (2020-01-19T19:53:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。