論文の概要: Training-free Video Temporal Grounding using Large-scale Pre-trained Models
- arxiv url: http://arxiv.org/abs/2408.16219v1
- Date: Thu, 29 Aug 2024 02:25:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 15:15:25.364332
- Title: Training-free Video Temporal Grounding using Large-scale Pre-trained Models
- Title(参考訳): 大規模事前学習モデルを用いた訓練不要ビデオ時間グラウンド
- Authors: Minghang Zheng, Xinhao Cai, Qingchao Chen, Yuxin Peng, Yang Liu,
- Abstract要約: ビデオの時間的グラウンドは、与えられた自然言語クエリに最も関係のある、トリミングされていないビデオ内のビデオセグメントを特定することを目的としている。
既存のビデオ時間的ローカライゼーションモデルは、トレーニングのために特定のデータセットに依存しており、データ収集コストが高い。
本研究では,事前学習型大規模モデルの能力を活用したトレーニングフリービデオ時間グラウンド手法を提案する。
- 参考スコア(独自算出の注目度): 41.71055776623368
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Video temporal grounding aims to identify video segments within untrimmed videos that are most relevant to a given natural language query. Existing video temporal localization models rely on specific datasets for training and have high data collection costs, but they exhibit poor generalization capability under the across-dataset and out-of-distribution (OOD) settings. In this paper, we propose a Training-Free Video Temporal Grounding (TFVTG) approach that leverages the ability of pre-trained large models. A naive baseline is to enumerate proposals in the video and use the pre-trained visual language models (VLMs) to select the best proposal according to the vision-language alignment. However, most existing VLMs are trained on image-text pairs or trimmed video clip-text pairs, making it struggle to (1) grasp the relationship and distinguish the temporal boundaries of multiple events within the same video; (2) comprehend and be sensitive to the dynamic transition of events (the transition from one event to another) in the video. To address these issues, we propose leveraging large language models (LLMs) to analyze multiple sub-events contained in the query text and analyze the temporal order and relationships between these events. Secondly, we split a sub-event into dynamic transition and static status parts and propose the dynamic and static scoring functions using VLMs to better evaluate the relevance between the event and the description. Finally, for each sub-event description, we use VLMs to locate the top-k proposals and leverage the order and relationships between sub-events provided by LLMs to filter and integrate these proposals. Our method achieves the best performance on zero-shot video temporal grounding on Charades-STA and ActivityNet Captions datasets without any training and demonstrates better generalization capabilities in cross-dataset and OOD settings.
- Abstract(参考訳): ビデオの時間的グラウンドは、与えられた自然言語クエリに最も関係のある、トリミングされていないビデオ内のビデオセグメントを特定することを目的としている。
既存のビデオ時間的ローカライゼーションモデルは、トレーニング用の特定のデータセットに依存し、データ収集コストが高いが、全データセットとアウト・オブ・ディストリビューション(OOD)設定下での一般化能力は低い。
本稿では,事前学習型大規模モデルの能力を活用した訓練自由時間グラウンド(TFVTG)手法を提案する。
ナイーブベースラインは、ビデオに提案を列挙し、事前訓練された視覚言語モデル(VLM)を使用して、視覚言語アライメントに従って最適な提案を選択することである。
しかしながら、既存のVLMは画像テキストペアやトリミングされたビデオクリップテキストペアで訓練されており、(1)関係を把握し、同じビデオ内の複数のイベントの時間的境界を区別すること、(2)ビデオ内のイベントの動的遷移(あるイベントから別のイベントへの遷移)を理解・敏感にすること、が困難である。
これらの問題に対処するために,大規模言語モデル(LLM)を用いてクエリテキストに含まれる複数のサブイベントを分析し,時間的順序とイベント間の関係を分析することを提案する。
第2に、サブイベントを動的遷移と静的状態の部分に分割し、VLMを用いた動的および静的スコアリング関数を提案し、イベントと記述の関連性をよりよく評価する。
最後に、各サブイベント記述に対して、トップkの提案を見つけるためにVLMを使用し、LLMが提供するサブイベント間の順序と関係を利用して、これらの提案をフィルタリングし、統合する。
本手法は,Charades-STA と ActivityNet Captions のデータセットをトレーニングすることなく,ゼロショット映像の時間的グラウンドで最高の性能を実現し,クロスデータセットと OOD 設定においてより優れた一般化能力を示す。
関連論文リスト
- VidLA: Video-Language Alignment at Scale [48.665918882615195]
大規模なビデオ言語アライメントのためのアプローチであるVidLAを提案する。
提案手法は,複数の検索ベンチマークにおける最先端手法を超越した手法である。
論文 参考訳(メタデータ) (2024-03-21T22:36:24Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
ダイナミックスビデオのモデリングのため、ビデオ事前トレーニングは難しい。
本稿では,ビデオ事前学習におけるこのような制限を,効率的なビデオ分解によって解決する。
筆者らのフレームワークは,13のマルチモーダルベンチマークにおいて,画像と映像のコンテントの理解と生成が可能であることを実証した。
論文 参考訳(メタデータ) (2024-02-05T16:30:49Z) - VidCoM: Fast Video Comprehension through Large Language Models with Multimodal Tools [44.78291853329394]
textbfVidCoMは、Large Language Models (LLM)を活用して、軽量なビジュアルツールを使用して動画を推論する高速適応フレームワークである。
InsOVERアルゴリズムは、言語命令の分解とビデオイベントの間の効率的なハンガリー語マッチングに基づいて、対応するビデオイベントを特定する。
論文 参考訳(メタデータ) (2023-10-16T17:05:56Z) - STOA-VLP: Spatial-Temporal Modeling of Object and Action for
Video-Language Pre-training [30.16501510589718]
本研究では,空間的・時間的次元にまたがる対象情報と行動情報を協調的にモデル化する事前学習フレームワークを提案する。
我々は,ビデオ言語モデルの事前学習プロセスに,両方の情報をよりうまく組み込むための2つの補助タスクを設計する。
論文 参考訳(メタデータ) (2023-02-20T03:13:45Z) - HierVL: Learning Hierarchical Video-Language Embeddings [108.77600799637172]
HierVLは階層的なビデオ言語埋め込みであり、長期および短期の関連を同時に扱う。
クリップレベルとビデオレベルの両方でテキストと視覚のアライメントを促進する階層的なコントラストトレーニングの目標を導入する。
我々の階層的スキームは、SotAを達成した長期的なビデオ表現と同様に、その単一レベルよりも優れたクリップ表現をもたらす。
論文 参考訳(メタデータ) (2023-01-05T21:53:19Z) - HiTeA: Hierarchical Temporal-Aware Video-Language Pre-training [49.52679453475878]
本稿では,モーメントとテキスト間の相互アライメントをモデル化するための時間対応ビデオ言語事前学習フレームワークHiTeAを提案する。
15の精確なビデオ言語理解と生成タスクに関する最先端の成果を得た。
論文 参考訳(メタデータ) (2022-12-30T04:27:01Z) - Align and Prompt: Video-and-Language Pre-training with Entity Prompts [111.23364631136339]
ビデオと言語による事前トレーニングは、様々なダウンストリームタスクに有望な改善を示している。
Align and Prompt: クロスモーダルアライメントを改良した,効率的かつ効果的なビデオ・言語事前学習フレームワークを提案する。
私たちのコードと事前訓練されたモデルはリリースされます。
論文 参考訳(メタデータ) (2021-12-17T15:55:53Z) - CLIP-It! Language-Guided Video Summarization [96.69415453447166]
この作業では、ジェネリックとクエリにフォーカスしたビデオ要約に対処する単一のフレームワークであるCLIP-Itを導入する。
本稿では,言語誘導型マルチモーダルトランスフォーマーを提案する。
本モデルは, 地道的な監督を伴わずに, 訓練により教師なしの設定に拡張することができる。
論文 参考訳(メタデータ) (2021-07-01T17:59:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。