Leveraging Large Language Models to Enhance Personalized Recommendations in E-commerce
- URL: http://arxiv.org/abs/2410.12829v1
- Date: Wed, 02 Oct 2024 13:59:56 GMT
- Title: Leveraging Large Language Models to Enhance Personalized Recommendations in E-commerce
- Authors: Wei Xu, Jue Xiao, Jianlong Chen,
- Abstract summary: This study explores the application of large language model (LLM) in personalized recommendation system of e-commerce.
LLM effectively captures the implicit needs of users through deep semantic understanding of user comments and product description data.
The study shows that LLM has significant advantages in the field of personalized recommendation, can improve user experience and promote platform sales growth.
- Score: 6.660249346977347
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study deeply explores the application of large language model (LLM) in personalized recommendation system of e-commerce. Aiming at the limitations of traditional recommendation algorithms in processing large-scale and multi-dimensional data, a recommendation system framework based on LLM is proposed. Through comparative experiments, the recommendation model based on LLM shows significant improvement in multiple key indicators such as precision, recall, F1 score, average click-through rate (CTR) and recommendation diversity. Specifically, the precision of the LLM model is improved from 0.75 to 0.82, the recall rate is increased from 0.68 to 0.77, the F1 score is increased from 0.71 to 0.79, the CTR is increased from 0.56 to 0.63, and the recommendation diversity is increased by 41.2%, from 0.34 to 0.48. LLM effectively captures the implicit needs of users through deep semantic understanding of user comments and product description data, and combines contextual data for dynamic recommendation to generate more accurate and diverse results. The study shows that LLM has significant advantages in the field of personalized recommendation, can improve user experience and promote platform sales growth, and provides strong theoretical and practical support for personalized recommendation technology in e-commerce.
Related papers
- Rec-R1: Bridging Generative Large Language Models and User-Centric Recommendation Systems via Reinforcement Learning [6.44608398856033]
Rec-R1 bridges large language models (LLMs) with recommendation systems through closed-loop optimization.
Unlike prompting and supervised fine-tuning (SFT), Rec-R1 directly optimize LLM generation using feedback from a fixed black-box recommendation model.
arXiv Detail & Related papers (2025-03-31T16:36:00Z) - Benchmarking LLMs in Recommendation Tasks: A Comparative Evaluation with Conventional Recommenders [27.273217543282215]
We introduce RecBench, which evaluates two primary recommendation tasks, i.e., click-through rate prediction (CTR) and sequential recommendation (SeqRec)
Our experiments cover up to 17 large models and are conducted across five diverse datasets from fashion, news, video, books, and music domains.
Our findings indicate that LLM-based recommenders outperform conventional recommenders, achieving up to a 5% AUC improvement in the CTR scenario and up to a 170% NDCG@10 improvement in the SeqRec scenario.
arXiv Detail & Related papers (2025-03-07T15:05:23Z) - EACO: Enhancing Alignment in Multimodal LLMs via Critical Observation [58.546205554954454]
We propose Enhancing Alignment in MLLMs via Critical Observation (EACO)
EACO aligns MLLMs by self-generated preference data using only 5k images economically.
EACO reduces the overall hallucinations by 65.6% on HallusionBench and improves the reasoning ability by 21.8% on MME-Cognition.
arXiv Detail & Related papers (2024-12-06T09:59:47Z) - Enhancing the Reasoning Ability of Multimodal Large Language Models via Mixed Preference Optimization [65.64108848398696]
We introduce a preference optimization process to enhance the multimodal reasoning capabilities of MLLMs.
We develop a simple yet effective method, termed Mixed Preference Optimization (MPO), which boosts multimodal CoT performance.
Our model, InternVL2-8B-MPO, achieves an accuracy of 67.0 on MathVista, outperforming InternVL2-8B by 8.7 points and achieving performance comparable to the 10x larger InternVL2-76B.
arXiv Detail & Related papers (2024-11-15T18:59:27Z) - CDR: Customizable Density Ratios of Strong-over-weak LLMs for Preference Annotation [15.776175440446414]
Preference tuning of large language models (LLMs) relies on high-quality human preference data.
We introduce customized density ratio (CDR), a training-free and highly effective method that leverages off-the-shelf LLMs for preference data annotation.
We show that tailoring the density ratio reward function with specific criteria and preference exemplars enhances performance across domains and within target areas.
arXiv Detail & Related papers (2024-11-04T18:54:39Z) - RosePO: Aligning LLM-based Recommenders with Human Values [38.029251417802044]
We propose a general framework -- Recommendation with smoothing personalized Preference Optimization (RosePO)
RosePO better aligns with customized human values during the post-training stage.
Evaluation on three real-world datasets demonstrates the effectiveness of our method.
arXiv Detail & Related papers (2024-10-16T12:54:34Z) - Toward Automatic Relevance Judgment using Vision--Language Models for Image--Text Retrieval Evaluation [56.49084589053732]
Vision--Language Models (VLMs) have demonstrated success across diverse applications, yet their potential to assist in relevance judgments remains uncertain.
This paper assesses the relevance estimation capabilities of VLMs, including CLIP, LLaVA, and GPT-4V, within a large-scale textitad hoc retrieval task tailored for multimedia content creation in a zero-shot fashion.
arXiv Detail & Related papers (2024-08-02T16:15:25Z) - On Softmax Direct Preference Optimization for Recommendation [50.896117978746]
We propose Softmax-DPO (S-DPO) to instill ranking information into the LM to help LM-based recommenders distinguish preferred items from negatives.
Specifically, we incorporate multiple negatives in user preference data and devise an alternative version of DPO loss tailored for LM-based recommenders.
arXiv Detail & Related papers (2024-06-13T15:16:11Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
We introduce a novel closed-form formulation for direct preference optimization using multiple reference models.
The resulting algorithm, Multi-Reference Preference Optimization (MRPO), leverages broader prior knowledge from diverse reference models.
Our experiments demonstrate that LLMs finetuned with MRPO generalize better in various preference data, regardless of data scarcity or abundance.
arXiv Detail & Related papers (2024-05-26T00:29:04Z) - Uncertainty-Aware Explainable Recommendation with Large Language Models [15.229417987212631]
We develop a model that utilizes the ID vectors of user and item inputs as prompts for GPT-2.
We employ a joint training mechanism within a multi-task learning framework to optimize both the recommendation task and explanation task.
Our method achieves 1.59 DIV, 0.57 USR and 0.41 FCR on the Yelp, TripAdvisor and Amazon dataset respectively.
arXiv Detail & Related papers (2024-01-31T14:06:26Z) - What Are We Optimizing For? A Human-centric Evaluation of Deep Learning-based Movie Recommenders [12.132920692489911]
We conduct a human-centric evaluation case study of four leading DL-RecSys models in the movie domain.
We test how different DL-RecSys models perform in personalized recommendation generation by conducting survey study with 445 real active users.
We find some DL-RecSys models to be superior in recommending novel and unexpected items and weaker in diversity, trustworthiness, transparency, accuracy, and overall user satisfaction.
arXiv Detail & Related papers (2024-01-21T23:56:57Z) - On Diversified Preferences of Large Language Model Alignment [51.26149027399505]
This paper presents the first quantitative analysis of the experimental scaling law for reward models with varying sizes.
Our analysis reveals that the impact of diversified human preferences depends on both model size and data size.
Larger models with sufficient capacity mitigate the negative effects of diverse preferences, while smaller models struggle to accommodate them.
arXiv Detail & Related papers (2023-12-12T16:17:15Z) - An Efficient Recommendation System in E-commerce using Passer learning
optimization based on Bi-LSTM [0.8399688944263843]
This research develops recommendation in e-commerce using passer learning optimization based on Bi-LSTM.
As compared to earlier methods, the pro-posed PL-optimized Bi-LSTM achieved values of 88.58%, 1.24%, 92.69%, and 92.69% for dataset 1, 88.46%, 0.48%, 92.43%, and 93.47% for dataset 2, and 92.51%, 1.58%, 91.90%, and 90.76% for dataset 3.
arXiv Detail & Related papers (2023-07-31T20:09:25Z) - Is ChatGPT Fair for Recommendation? Evaluating Fairness in Large
Language Model Recommendation [52.62492168507781]
We propose a novel benchmark called Fairness of Recommendation via LLM (FaiRLLM)
This benchmark comprises carefully crafted metrics and a dataset that accounts for eight sensitive attributes.
By utilizing our FaiRLLM benchmark, we conducted an evaluation of ChatGPT and discovered that it still exhibits unfairness to some sensitive attributes when generating recommendations.
arXiv Detail & Related papers (2023-05-12T16:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.