Megastable quantization in generalized pilot-wave hydrodynamics
- URL: http://arxiv.org/abs/2410.12849v3
- Date: Tue, 14 Jan 2025 22:40:24 GMT
- Title: Megastable quantization in generalized pilot-wave hydrodynamics
- Authors: Álvaro G. López, Rahil N. Valani,
- Abstract summary: A classical particle in a harmonic potential gives rise to a continuous energy spectra, whereas the corresponding quantum particle exhibits countably infinite quantized energy levels.
In recent years, classical non-Markovian wave-particle entities that materialize as walking droplets have been shown to exhibit various hydrodynamic quantum analogs.
- Score: 0.0
- License:
- Abstract: A classical particle in a harmonic potential gives rise to a continuous energy spectra, whereas the corresponding quantum particle exhibits countably infinite quantized energy levels. In recent years, classical non-Markovian wave-particle entities that materialize as walking droplets have been shown to exhibit various hydrodynamic quantum analogs, including quantization in a harmonic potential by displaying few coexisting limit cycle orbits. By considering a truncated-memory stroboscopic pilot-wave model of the system in the low dissipation regime, we obtain a classical harmonic oscillator perturbed by oscillatory non-conservative forces that displays countably infinite coexisting limit-cycle states, also known as \emph{megastability}. Using averaging techniques in the low-memory regime, we derive analytical approximations of the orbital radii, orbital frequency and Lyapunov energy function of this megastable spectrum, and further show average energy conservation along these quantized states. Our formalism extends to a general class of self-excited oscillators and can be used to construct megastable spectrum with different energy-frequency relations.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Quantum Origin of Limit Cycles, Fixed Points, and Critical Slowing Down [1.8771881051078294]
We show how coherent limit-cycle oscillations and algebraic decay can emerge in a quantum system governed by a Markovian master equation.
In particular, we demonstrate that the fingerprint of a limit cycle is a slow-decaying branch with vanishing decoherence rates in the Liouville spectrum.
arXiv Detail & Related papers (2024-05-14T18:00:01Z) - Quantum asymptotic amplitude for quantum oscillatory systems from the Koopman operator viewpoint [0.0]
We propose a definition of the quantum amplitude for quantum oscillatory systems.
We show that the proposed quantum amplitude appropriately yields isostable amplitude values that decay exponentially with a constant rate.
arXiv Detail & Related papers (2024-03-28T10:33:29Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Open quantum dynamics of strongly coupled oscillators with
multi-configuration time-dependent Hartree propagation and Markovian quantum
jumps [0.0]
We implement a quantum state trajectory scheme for solving Lindblad quantum master equations.
We show the potential for solving the dissipative dynamics of finite size arrays of strongly interacting quantized oscillators with high excitation densities.
arXiv Detail & Related papers (2022-08-02T03:01:14Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Fano Resonances in Quantum Transport with Vibrations [50.591267188664666]
Quantum mechanical scattering continuum states coupled to a scatterer with a discrete spectrum gives rise to Fano resonances.
We consider scatterers that possess internal vibrational degrees of freedom in addition to discrete states.
arXiv Detail & Related papers (2021-08-07T12:13:59Z) - Kapitza-Dirac blockade: A universal tool for the deterministic
preparation of non-Gaussian oscillator states [0.0]
We show how interference in the transition amplitudes in a bichromatic laser field can suppress the sequential climbing of harmonic oscillator states.
This technique can transform the harmonic oscillator into a coherent two-level system or be used to build a large-momentum-transfer beam splitter for matter-waves.
arXiv Detail & Related papers (2020-11-25T17:02:04Z) - Bloch-like super-oscillations and unidirectional motion of phase driven
quantum walkers [0.0]
We study the dynamics of a quantum walker simultaneously subjected to time-independent and -dependent phases.
We show that the average drift velocity can be well described within a continuous-time analogous model.
arXiv Detail & Related papers (2020-08-15T12:19:05Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.