Quantum asymptotic amplitude for quantum oscillatory systems from the Koopman operator viewpoint
- URL: http://arxiv.org/abs/2403.19297v1
- Date: Thu, 28 Mar 2024 10:33:29 GMT
- Title: Quantum asymptotic amplitude for quantum oscillatory systems from the Koopman operator viewpoint
- Authors: Yuzuru Kato,
- Abstract summary: We propose a definition of the quantum amplitude for quantum oscillatory systems.
We show that the proposed quantum amplitude appropriately yields isostable amplitude values that decay exponentially with a constant rate.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We have recently proposed a fully quantum-mechanical definition of the asymptotic phase for quantum nonlinear oscillators, which is also applicable in the strong quantum regime [Kato and Nakao 2022 Chaos 32 063133]. In this study, we propose a definition of the quantum asymptotic amplitude for quantum oscillatory systems, which extends naturally the definition of the asymptotic amplitude for classical nonlinear oscillators on the basis of the Koopman operator theory. We introduce the asymptotic amplitude for quantum oscillatory systems by using the eigenoperator of the backward Liouville operator associated with the largest non-zero real eigenvalue. Using examples of the quantum van der Pol oscillator with the quantum Kerr effect, exhibiting quantum limit-cycle oscillations, and the quantum van der Pol model with the quantum squeezing and degenerate parametric oscillator with nonlinear damping, exhibiting quantum noise-induced oscillations, we illustrate that the proposed quantum asymptotic amplitude appropriately yields isostable amplitude values that decay exponentially with a constant rate.
Related papers
- Attractive-repulsive interaction in coupled quantum oscillators [14.37149160708975]
We find an interesting symmetry-breaking transition from quantum limit cycle oscillation to quantum inhomogeneous steady state.
This transition is contrary to the previously known symmetry-breaking transition from quantum homogeneous to inhomogeneous steady state.
Remarkably, we find the generation of entanglement associated with the symmetry-breaking transition that has no analogue in the classical domain.
arXiv Detail & Related papers (2024-08-23T10:45:19Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - A definition of the asymptotic phase for quantum nonlinear oscillators
from the Koopman operator viewpoint [0.0]
The proposed phase appropriately yields isochronous phase values in both semiclassical and strong quantum regimes.
We show that the proposed phase appropriately yields isochronous phase values in both semiclassical and strong quantum regimes.
arXiv Detail & Related papers (2023-02-11T03:08:47Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Quantum limit-cycles and the Rayleigh and van der Pol oscillators [0.0]
Self-oscillating systems are emerging as canonical models for driven dissipative nonequilibrium open quantum systems.
We derive an exact analytical solution for the steady-state quantum dynamics of the simplest of these models.
Our solution is a generalization to arbitrary temperature of existing solutions for very-low, or zero, temperature.
arXiv Detail & Related papers (2020-11-05T08:51:51Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Classical and statistical limits of the quantum singular oscillator [0.0]
Weyl-Wigner phase-space and Bohmian mechanics frameworks are used.
Two inequivalent quantum systems are shown to be statistically equivalent at thermal equilibrium.
arXiv Detail & Related papers (2020-07-10T19:07:33Z) - Quantum asymptotic phase reveals signatures of quantum synchronization [0.0]
We propose a fully quantum-mechanical definition of the phase, which is a key quantity in the synchronization analysis of classical nonlinear oscillators.
We show that phase locking of the system with a harmonic drive at several different frequencies can be interpreted as synchronization on a torus rather than a simple limit cycle.
arXiv Detail & Related papers (2020-06-01T07:26:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.