Megastable quantization in self-excited systems
- URL: http://arxiv.org/abs/2406.03906v1
- Date: Thu, 6 Jun 2024 09:40:57 GMT
- Title: Megastable quantization in self-excited systems
- Authors: Álvaro G. López, Rahil N. Valani,
- Abstract summary: A classical particle in a confining potential gives rise to a Hamiltonian conservative dynamical system.
The corresponding quantum particle exhibits countably infinite discrete energy levels.
Our formalism can be extended to self-excited particles in general confining potentials.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A classical particle in a confining potential gives rise to a Hamiltonian conservative dynamical system with an uncountably infinite continuous energy spectra, whereas the corresponding quantum particle exhibits countably infinite discrete energy levels. We consider a class of nonlinear self-sustained oscillators describing a classical active particle in a harmonic potential. These nonlinear oscillators emerge in the low-memory regime of both state-dependent time-delay systems as well as in non-Markovian stroboscopic models of walking droplets. Using averaging techniques, we prove the existence of a countably infinite number of asymptotically stable quantized orbits, i.e. megastability, for this class of self-excited systems. The set of periodic orbits consists of a sequence of nested limit-cycle attractors with quasilinear increasing amplitude and alternating stability, yielding smooth basins of attraction. By using the Lyapunov energy function, we estimate the energy spectra of this megastable set of orbits, and perform numerical simulations to confirm the mathematical analysis. Our formalism can be extended to self-excited particles in general confining potentials, resulting in different energy-frequency relations for these dynamical analogs of quantization.
Related papers
- Megastable quantization in generalized pilot-wave hydrodynamics [0.0]
A classical particle in a harmonic potential gives rise to a continuous energy spectra, whereas the corresponding quantum particle exhibits countably infinite quantized energy levels.
In recent years, classical non-Markovian wave-particle entities that materialize as walking droplets have been shown to exhibit various hydrodynamic quantum analogs.
arXiv Detail & Related papers (2024-10-10T11:38:12Z) - Squeezing oscillations in a multimode bosonic Josephson junction [0.4335300149154109]
We show how to enhance the quantum correlations in a one-dimensional multimode bosonic Josephson junction.
Our work provides new ways for engineering correlations and entanglement in the external degree of freedom of interacting many-body systems.
arXiv Detail & Related papers (2023-04-05T23:29:05Z) - Autonomous coherence protection of a two-level system in a fluctuating
environment [68.8204255655161]
We re-examine a scheme originally intended to remove the effects of static Doppler broadening from an ensemble of non-interacting two-level systems (qubits)
We demonstrate that this scheme is far more powerful and can also protect a single (or even an ensemble) qubit's energy levels from noise which depends on both time and space.
arXiv Detail & Related papers (2023-02-08T01:44:30Z) - Orbit quantization in a retarded harmonic oscillator [0.0]
We analytically predict the value of the first Hopf bifurcation, unleashing a self-oscillatory motion.
When the system is driven very far from equilibrium, a multiscale strange attractor displaying intrinsic and robust intermittency is uncovered.
arXiv Detail & Related papers (2023-01-25T04:47:06Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - A driven quantum superconducting circuit with multiple tunable
degeneracies [0.0]
We present the experimental discovery of multiple simultaneous degeneracies in the spectrum of a Kerr oscillator subjected to a squeezing drive.
Remarkably, these degeneracies can be turned on-and-off on demand, and their number is tunable.
arXiv Detail & Related papers (2022-11-08T23:15:29Z) - Reminiscence of classical chaos in driven transmons [117.851325578242]
We show that even off-resonant drives can cause strong modifications to the structure of the transmon spectrum rendering a large part of it chaotic.
Results lead to a photon number threshold characterizing the appearance of chaos-induced quantum demolition effects.
arXiv Detail & Related papers (2022-07-19T16:04:46Z) - Dynamics of Transmon Ionization [94.70553167084388]
We numerically explore the dynamics of a driven transmon-resonator system under strong and nearly resonant measurement drives.
We find clear signatures of transmon ionization where the qubit escapes out of its cosine potential.
arXiv Detail & Related papers (2022-03-21T18:00:15Z) - Bloch-like super-oscillations and unidirectional motion of phase driven
quantum walkers [0.0]
We study the dynamics of a quantum walker simultaneously subjected to time-independent and -dependent phases.
We show that the average drift velocity can be well described within a continuous-time analogous model.
arXiv Detail & Related papers (2020-08-15T12:19:05Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.