Systems with Switching Causal Relations: A Meta-Causal Perspective
- URL: http://arxiv.org/abs/2410.13054v1
- Date: Wed, 16 Oct 2024 21:32:31 GMT
- Title: Systems with Switching Causal Relations: A Meta-Causal Perspective
- Authors: Moritz Willig, Tim Nelson Tobiasch, Florian Peter Busch, Jonas Seng, Devendra Singh Dhami, Kristian Kersting,
- Abstract summary: flexibility of agents' actions or tipping points in the environmental process can change the qualitative dynamics of the system.
New causal relationships may emerge, while existing ones change or disappear, resulting in an altered causal graph.
We propose the concept of meta-causal states, which groups classical causal models into clusters based on equivalent qualitative behavior.
- Score: 18.752058058199847
- License:
- Abstract: Most work on causality in machine learning assumes that causal relationships are driven by a constant underlying process. However, the flexibility of agents' actions or tipping points in the environmental process can change the qualitative dynamics of the system. As a result, new causal relationships may emerge, while existing ones change or disappear, resulting in an altered causal graph. To analyze these qualitative changes on the causal graph, we propose the concept of meta-causal states, which groups classical causal models into clusters based on equivalent qualitative behavior and consolidates specific mechanism parameterizations. We demonstrate how meta-causal states can be inferred from observed agent behavior, and discuss potential methods for disentangling these states from unlabeled data. Finally, we direct our analysis towards the application of a dynamical system, showing that meta-causal states can also emerge from inherent system dynamics, and thus constitute more than a context-dependent framework in which mechanisms emerge only as a result of external factors.
Related papers
- Causal Modeling in Multi-Context Systems: Distinguishing Multiple Context-Specific Causal Graphs which Account for Observational Support [12.738813972869528]
Causal structure learning with data from multiple contexts carries both opportunities and challenges.
Here we study the impact of differing observational support between contexts on the identifiability of causal graphs.
We propose a framework to model context-specific independence within structural causal models.
arXiv Detail & Related papers (2024-10-27T10:34:58Z) - Unified Causality Analysis Based on the Degrees of Freedom [1.2289361708127877]
This paper presents a unified method capable of identifying fundamental causal relationships between pairs of systems.
By analyzing the degrees of freedom in the system, our approach provides a more comprehensive understanding of both causal influence and hidden confounders.
This unified framework is validated through theoretical models and simulations, demonstrating its robustness and potential for broader application.
arXiv Detail & Related papers (2024-10-25T10:57:35Z) - Counterfactual-based Root Cause Analysis for Dynamical Systems [0.33748750222488655]
We propose a causal method for root cause identification using a Residual Neural Network.
We show that more root causes are identified when an intervention is performed on the structural equation and the external influence.
We illustrate the effectiveness of the proposed method on a benchmark dynamic system as well as on a real world river dataset.
arXiv Detail & Related papers (2024-06-12T11:38:13Z) - Nonparametric Partial Disentanglement via Mechanism Sparsity: Sparse
Actions, Interventions and Sparse Temporal Dependencies [58.179981892921056]
This work introduces a novel principle for disentanglement we call mechanism sparsity regularization.
We propose a representation learning method that induces disentanglement by simultaneously learning the latent factors.
We show that the latent factors can be recovered by regularizing the learned causal graph to be sparse.
arXiv Detail & Related papers (2024-01-10T02:38:21Z) - Interpretable Imitation Learning with Dynamic Causal Relations [65.18456572421702]
We propose to expose captured knowledge in the form of a directed acyclic causal graph.
We also design this causal discovery process to be state-dependent, enabling it to model the dynamics in latent causal graphs.
The proposed framework is composed of three parts: a dynamic causal discovery module, a causality encoding module, and a prediction module, and is trained in an end-to-end manner.
arXiv Detail & Related papers (2023-09-30T20:59:42Z) - Correlations, information backflow, and objectivity in a class of pure
dephasing models [0.0]
We critically examine the role that correlations established between a system and fragments of its environment play in characterising the ensuing dynamics.
We employ a class of dephasing models where the state of the initial environment represents a tunable degree of freedom that qualitatively and quantitatively affects the correlation profiles.
We demonstrate that for precisely the same non-Markovian reduced dynamics of the system arising from different microscopic models, some will exhibit quantum Darwinistic features, while others show no meaningful notion of classical objectivity is present.
arXiv Detail & Related papers (2022-01-25T19:00:06Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
We introduce a causal formalism of motion forecasting, which casts the problem as a dynamic process with three groups of latent variables.
We devise a modular architecture that factorizes the representations of invariant mechanisms and style confounders to approximate a causal graph.
Experiment results on synthetic and real datasets show that our three proposed components significantly improve the robustness and reusability of the learned motion representations.
arXiv Detail & Related papers (2021-11-29T18:59:09Z) - Discovering Latent Causal Variables via Mechanism Sparsity: A New
Principle for Nonlinear ICA [81.4991350761909]
Independent component analysis (ICA) refers to an ensemble of methods which formalize this goal and provide estimation procedure for practical application.
We show that the latent variables can be recovered up to a permutation if one regularizes the latent mechanisms to be sparse.
arXiv Detail & Related papers (2021-07-21T14:22:14Z) - COSMO: Conditional SEQ2SEQ-based Mixture Model for Zero-Shot Commonsense
Question Answering [50.65816570279115]
Identification of the implicit causes and effects of a social context is the driving capability which can enable machines to perform commonsense reasoning.
Current approaches in this realm lack the ability to perform commonsense reasoning upon facing an unseen situation.
We present Conditional SEQ2SEQ-based Mixture model (COSMO), which provides us with the capabilities of dynamic and diverse content generation.
arXiv Detail & Related papers (2020-11-02T07:08:19Z) - Causal Discovery in Physical Systems from Videos [123.79211190669821]
Causal discovery is at the core of human cognition.
We consider the task of causal discovery from videos in an end-to-end fashion without supervision on the ground-truth graph structure.
arXiv Detail & Related papers (2020-07-01T17:29:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.