論文の概要: Cliqueformer: Model-Based Optimization with Structured Transformers
- arxiv url: http://arxiv.org/abs/2410.13106v3
- Date: Wed, 05 Feb 2025 21:16:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-07 17:44:05.577734
- Title: Cliqueformer: Model-Based Optimization with Structured Transformers
- Title(参考訳): Cliqueformer:構造化トランスを用いたモデルベース最適化
- Authors: Jakub Grudzien Kuba, Pieter Abbeel, Sergey Levine,
- Abstract要約: 大規模なニューラルネットワークは予測タスクに優れるが、タンパク質工学や材料発見といった設計問題への応用には、オフラインモデルベース最適化(MBO)の問題を解決する必要がある。
機能的グラフィカルモデル(FGM)を用いてブラックボックス関数の構造を学習するトランスフォーマーベースのアーキテクチャであるCliqueformerを提案する。
化学および遺伝子設計タスクを含む様々な領域において、Cliqueformerは既存の方法よりも優れた性能を示している。
- 参考スコア(独自算出の注目度): 102.55764949282906
- License:
- Abstract: Large neural networks excel at prediction tasks, but their application to design problems, such as protein engineering or materials discovery, requires solving offline model-based optimization (MBO) problems. While predictive models may not directly translate to effective design, recent MBO algorithms incorporate reinforcement learning and generative modeling approaches. Meanwhile, theoretical work suggests that exploiting the target function's structure can enhance MBO performance. We present Cliqueformer, a transformer-based architecture that learns the black-box function's structure through functional graphical models (FGM), addressing distribution shift without relying on explicit conservative approaches. Across various domains, including chemical and genetic design tasks, Cliqueformer demonstrates superior performance compared to existing methods.
- Abstract(参考訳): 大規模なニューラルネットワークは予測タスクに優れるが、タンパク質工学や材料発見といった設計問題への応用には、オフラインモデルベース最適化(MBO)の問題を解決する必要がある。
予測モデルは直接的に効果的な設計に変換することはできないが、最近のMBOアルゴリズムには強化学習と生成モデリングアプローチが組み込まれている。
一方、理論的な研究により、対象関数の構造を活用すれば、MBO性能が向上する可能性が示唆された。
Cliqueformerは,関数型グラフィカルモデル(FGM)を用いてブラックボックス関数の構造を学習し,明示的な保守的アプローチに頼ることなく,分散シフトに対処するトランスフォーマーアーキテクチャである。
化学および遺伝子設計タスクを含む様々な領域において、Cliqueformerは既存の方法よりも優れた性能を示している。
関連論文リスト
- The Buffer Mechanism for Multi-Step Information Reasoning in Language Models [52.77133661679439]
大きな言語モデルの内部的推論メカニズムを調べることは、よりよいモデルアーキテクチャとトレーニング戦略を設計するのに役立ちます。
本研究では,トランスフォーマーモデルが垂直思考戦略を採用するメカニズムを解明するために,シンボリックデータセットを構築した。
我々は,GPT-2モデルに必要なトレーニング時間を75%削減し,モデルの推論能力を高めるために,ランダムな行列ベースアルゴリズムを提案した。
論文 参考訳(メタデータ) (2024-05-24T07:41:26Z) - Aligning Optimization Trajectories with Diffusion Models for Constrained
Design Generation [17.164961143132473]
本稿では,拡散モデルのサンプリング軌跡と従来の物理法に基づく最適化軌跡との整合性を示す学習フレームワークを提案する。
提案手法では,高コストプリプロセッシングや外部サロゲートモデル,ラベル付きデータの追加を必要とせずに,実用的で高性能な設計を2段階で生成することができる。
この結果から, TAは分布内構成における最先端の深層生成モデルより優れ, 推論計算コストを半減することがわかった。
論文 参考訳(メタデータ) (2023-05-29T09:16:07Z) - Robust Graph Representation Learning via Predictive Coding [46.22695915912123]
予測符号化は、当初脳の情報処理をモデル化するために開発されたメッセージパッシングフレームワークである。
本研究では,予測符号化のメッセージパス規則に依存するモデルを構築する。
提案したモデルは,帰納的タスクと帰納的タスクの両方において,標準的なモデルに匹敵する性能を示す。
論文 参考訳(メタデータ) (2022-12-09T03:58:22Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
モデルベースRL(MBRL)の非遅延性能保証のための新規で一般的な理論スキームを提案する。
続いて導いた境界は、モデルシフトとパフォーマンス改善の関係を明らかにします。
さらなる例では、動的に変化する探索からの学習モデルが、最終的なリターンの恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2022-10-15T17:57:43Z) - TopoDiff: A Performance and Constraint-Guided Diffusion Model for
Topology Optimization [4.091593765662773]
TopoDiffは、性能認識および製造可能性認識トポロジー最適化のための条件付き拡散モデルに基づくアーキテクチャである。
本手法は,物理性能の平均誤差を8倍に減らし,最先端の条件付きGANを著しく向上させる。
論文 参考訳(メタデータ) (2022-08-20T03:26:00Z) - Re-parameterizing Your Optimizers rather than Architectures [119.08740698936633]
本稿では,モデル固有の事前知識を構造学に取り入れ,汎用モデル(簡易モデル)の学習に使用する新しいパラダイムを提案する。
実装として,モデル固有のハイパーパラメータの集合に従って勾配を変更することによって,事前知識を付加する手法を提案する。
Reprでトレーニングされた単純なモデルに対しては、VGGスタイルのプレーンモデルに注目し、ReprでトレーニングされたそのようなシンプルなモデルがRep-VGGと呼ばれ、最近のよく設計されたモデルと同等に動作することを示す。
論文 参考訳(メタデータ) (2022-05-30T16:55:59Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
計算設計の問題は、合成生物学からコンピュータアーキテクチャまで、様々な場面で発生している。
本研究では,分布外入力に対する接地的目標の実際の値を低くする目的関数のモデルを学習する手法を提案する。
COMは、様々なMBO問題に対して、既存のメソッドの実装と性能の面では単純である。
論文 参考訳(メタデータ) (2021-07-14T17:55:28Z) - High-Dimensional Bayesian Optimization via Tree-Structured Additive
Models [40.497123136157946]
変数の重複部分集合を持つ低次元関数を合成して高次元目標関数をモデル化する一般化加法モデルを検討する。
私たちの目標は、必要な計算リソースを減らし、より高速なモデル学習を促進することです。
我々は,合成関数と実世界のデータセットに関する様々な実験を通して,本手法の有効性を実証し,議論する。
論文 参考訳(メタデータ) (2020-12-24T03:56:44Z) - Optimization-Inspired Learning with Architecture Augmentations and
Control Mechanisms for Low-Level Vision [74.9260745577362]
本稿では,GDC(Generative, Discriminative, and Corrective)の原則を集約する,最適化に着想を得た統合学習フレームワークを提案する。
フレキシブルな組み合わせで最適化モデルを効果的に解くために,3つのプロパゲーティブモジュールを構築した。
低レベル視覚タスクにおける実験は、GDCの有効性と適応性を検証する。
論文 参考訳(メタデータ) (2020-12-10T03:24:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。