Deterministic Creation of Identical Monochromatic Quantum Emitters in Hexagonal Boron Nitride
- URL: http://arxiv.org/abs/2410.13169v1
- Date: Thu, 17 Oct 2024 02:52:01 GMT
- Title: Deterministic Creation of Identical Monochromatic Quantum Emitters in Hexagonal Boron Nitride
- Authors: Muchuan Hua, Wei-Ying Chen, Hanyu Hou, Venkata Surya Chaitanya Kolluru, Maria K. Y. Chan, HaiHua Liu, Thomas E. Gage, Jian-Min Zuo, Benjamin T. Diroll, Jianguo Wen,
- Abstract summary: The authors report a deterministic creation of identical room temperature quantum emitters using masked-carbon-ion implantation on freestanding hBN flakes.
Quantum emitters fabricated by our approach showed thermally limited monochromaticity with an emission center wavelength distribution of 590.7 +- 2.7 nm.
Our method provides a reliable platform for characterization and fabrication research on hBN based quantum emitters, helping to reveal the origins of the single-photon-emission behavior in hBN.
- Score: 0.856679809939242
- License:
- Abstract: Deterministic creation of quantum emitters with high single-photon-purity and excellent indistinguishability is essential for practical applications in quantum information science. Many successful attempts have been carried out in hexagonal boron nitride showing its capability of hosting room temperature quantum emitters. However, most of the existing methods produce emitters with heterogeneous optical properties and unclear creation mechanisms. Here, the authors report a deterministic creation of identical room temperature quantum emitters using masked-carbon-ion implantation on freestanding hBN flakes. Quantum emitters fabricated by our approach showed thermally limited monochromaticity with an emission center wavelength distribution of 590.7 +- 2.7 nm, a narrow full width half maximum of 7.1 +- 1.7 nm, excellent brightness (1MHz emission rate), and extraordinary stability. Our method provides a reliable platform for characterization and fabrication research on hBN based quantum emitters, helping to reveal the origins of the single-photon-emission behavior in hBN and favoring practical applications, especially the industrial-scale production of quantum technology.
Related papers
- Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Comparative study of quantum emitter fabrication in wide bandgap
materials using localized electron irradiation [33.18585053467985]
Quantum light sources are crucial foundational components for various quantum technology applications.
With the rapid development of quantum technology, there has been a growing demand for materials with the capability of hosting quantum emitters.
One such material platform uses fluorescent defects in hexagonal boron nitride (hBN) that can host deep sublevels within the bandgap.
The localized electron irradiation has shown its effectiveness in generating deep sublevels to induce single emitters in hBN.
arXiv Detail & Related papers (2023-12-05T16:12:37Z) - Monolithic Integration of Single Quantum Emitters in hBN Bullseye
Cavities [0.0]
This work utilizes a monolithic circular Bragg grating device to enhance the collection of single photons with 436 nm wavelength emitted from quantum emitters in hexagonal boron nitride.
We observe a 6- fold increase in collected intensity for a single photon emitter coupled to a device compared to an uncoupled emitter, and show exceptional spectral stability at cryogenic temperature.
arXiv Detail & Related papers (2023-09-25T23:19:50Z) - Highly photostable Zn-treated halide perovskite nanocrystals for
efficient single photon generation [0.0]
We fabricate and characterize in a systematic manner colloidal-treated $CsPbBr_3$ NCs obtained through $Zn2+$ ion doping at the Pb-site.
These doped NCs exhibit high single-photon purity, reduced blinking on a sub-millisecond timescale and stability of the bright state for excitation powers well above the saturation levels.
arXiv Detail & Related papers (2023-07-29T11:23:30Z) - Characteristics of quantum emitters in hexagonal boron nitride suitable
for integration with nanophotonic platforms [6.56645008669449]
Single photon emitters in 2D hexagonal boron nitride (hBN) are promising solid-state quantum emitters for photonic applications and quantum networks.
We focus on two different kinds of hBN samples that particularly lend themselves for integration with nanophotonic devices.
arXiv Detail & Related papers (2022-10-20T08:51:03Z) - Localized creation of yellow single photon emitting carbon complexes in
hexagonal boron nitride [27.965277627489417]
Single photon emitters in solid-state crystals have received a lot of attention as building blocks for numerous quantum technology applications.
Here, we demonstrate the localized fabrication of hBN emitter arrays by electron beam irradiation.
Our measurements of optically detected magnetic resonance have not revealed any addressable spin states.
arXiv Detail & Related papers (2022-08-29T10:44:12Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Phonon dephasing and spectral diffusion of quantum emitters in hexagonal
Boron Nitride [52.915502553459724]
Quantum emitters in hexagonal boron nitride (hBN) are emerging as bright and robust sources of single photons for applications in quantum optics.
We study phonon dephasing and spectral diffusion of quantum emitters in hBN via resonant excitation spectroscopy at cryogenic temperatures.
arXiv Detail & Related papers (2021-05-25T05:56:18Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.