Comparative study of quantum emitter fabrication in wide bandgap
materials using localized electron irradiation
- URL: http://arxiv.org/abs/2312.02856v4
- Date: Mon, 26 Feb 2024 11:38:23 GMT
- Title: Comparative study of quantum emitter fabrication in wide bandgap
materials using localized electron irradiation
- Authors: Anand Kumar, Chanaprom Cholsuk, Mohammad N. Mishuk, Mouli Hazra,
Clotilde Pillot, Tjorben Matthes, Tanveer A. Shaik, Asli Cakan, Volker
Deckert, Sujin Suwanna, Tobias Vogl
- Abstract summary: Quantum light sources are crucial foundational components for various quantum technology applications.
With the rapid development of quantum technology, there has been a growing demand for materials with the capability of hosting quantum emitters.
One such material platform uses fluorescent defects in hexagonal boron nitride (hBN) that can host deep sublevels within the bandgap.
The localized electron irradiation has shown its effectiveness in generating deep sublevels to induce single emitters in hBN.
- Score: 33.18585053467985
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum light sources are crucial foundational components for various quantum
technology applications. With the rapid development of quantum technology,
there has been a growing demand for materials with the capability of hosting
quantum emitters. One such material platform uses fluorescent defects in
hexagonal boron nitride (hBN) that can host deep sublevels within the bandgap.
The localized electron irradiation has shown its effectiveness in generating
deep sublevels to induce single emitters in hBN. The question is whether
localized (electron beam) irradiation is a reliable tool for creating emitters
in other wide bandgap materials and its uniqueness to hBN. Here, we investigate
and compare the fabrication of quantum emitters in hBN and exfoliated muscovite
mica flakes along with other 3D crystals, such as silicon carbide and gallium
nitride, which are known to host quantum emitters. We used our primary
fabrication technique of localized electron irradiation using a standard
scanning electron microscope. To complement our experimental work, we employed
density functional theory simulations to study the atomic structures of defects
in mica. While our fabrication technique allows one to create hBN quantum
emitters with a high yield and high single photon purity, it is unable to
fabricate single emitters in the other solid-state crystals under
investigation. This allows us to draw conclusions on the emitter fabrication
mechanism in hBN, which could rely on activating pre-existing defects by charge
state manipulation. Therefore, we provide an essential step toward the
identification of hBN emitters and their formation process.
Related papers
- Decoherence of Quantum Emitters in hexagonal Boron Nitride [0.17413461132662073]
Coherent quantum emitters are a central resource for advanced quantum technologies.
Here, we demonstrate that hBN processes can degrade the coherence, and hence the functionality, of quantum emitters in hBN.
We highlight the critical importance of crystal lattice quality to achieving coherent quantum emitters in hBN.
arXiv Detail & Related papers (2024-10-22T04:25:35Z) - Deterministic Creation of Identical Monochromatic Quantum Emitters in Hexagonal Boron Nitride [0.856679809939242]
The authors report a deterministic creation of identical room temperature quantum emitters using masked-carbon-ion implantation on freestanding hBN flakes.
Quantum emitters fabricated by our approach showed thermally limited monochromaticity with an emission center wavelength distribution of 590.7 +- 2.7 nm.
Our method provides a reliable platform for characterization and fabrication research on hBN based quantum emitters, helping to reveal the origins of the single-photon-emission behavior in hBN.
arXiv Detail & Related papers (2024-10-17T02:52:01Z) - Electrical pumping of h-BN single-photon sources in van der Waals heterostructures [5.237044436478257]
Defect-induced tunneling currents across graphene and NbSe2 electrodes sandwiching an atomically thin h-BN layer allows persistent and repeatable generation of non-classical light from h-BN.
The collected emission photon energies range between 1.4 and 2.9 eV, revealing the electrical excitation of a variety of atomic defects.
arXiv Detail & Related papers (2024-07-19T06:54:41Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Localized creation of yellow single photon emitting carbon complexes in
hexagonal boron nitride [27.965277627489417]
Single photon emitters in solid-state crystals have received a lot of attention as building blocks for numerous quantum technology applications.
Here, we demonstrate the localized fabrication of hBN emitter arrays by electron beam irradiation.
Our measurements of optically detected magnetic resonance have not revealed any addressable spin states.
arXiv Detail & Related papers (2022-08-29T10:44:12Z) - Deterministic fabrication of blue quantum emitters in hexagonal boron
nitride [3.261706723536935]
We present a robust, deterministic electron beam technique for site-specific fabrication of blue quantum emitters with a zero-phonon line at 436 nm (2.8 eV)
We show that the emission intensity is proportional to electron dose and that the efficacy of the fabrication method correlates with a defect emission at 305 nm (4.1 eV)
Our results provide important insights into photophysical properties and structure of defects in hBN and a framework for deterministic fabrication of quantum emitters in hBN.
arXiv Detail & Related papers (2021-11-26T11:51:12Z) - Creating Quantum Emitters in Hexagonal Boron Nitride Deterministically
on Chip-Compatible Substrates [51.112488102081734]
Two-dimensional hexagonal boron nitride (hBN) hosts bright room-temperature single-photon emitters (SPEs)
Here, we report a radiation- and lithography-free route to deterministically activate hBN SPEs by nanoindentation with an atomic force microscope (AFM) tip.
arXiv Detail & Related papers (2021-06-28T20:58:02Z) - Phonon dephasing and spectral diffusion of quantum emitters in hexagonal
Boron Nitride [52.915502553459724]
Quantum emitters in hexagonal boron nitride (hBN) are emerging as bright and robust sources of single photons for applications in quantum optics.
We study phonon dephasing and spectral diffusion of quantum emitters in hBN via resonant excitation spectroscopy at cryogenic temperatures.
arXiv Detail & Related papers (2021-05-25T05:56:18Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Tunable quantum photonics platform based on fiber-cavity enhanced single
photon emission from two-dimensional hBN [52.915502553459724]
In this work we present a hybrid system consisting of defect centers in few-layer hBN grown by chemical vapor deposition and a fiber-based Fabry-Perot cavity.
We achieve very large cavity-assisted signal enhancement up to 50-fold and equally strong linewidth narrowing owing to cavity funneling.
Our work marks an important milestone for the deployment of 2D materials coupled to fiber-based cavities in practical quantum technologies.
arXiv Detail & Related papers (2020-06-23T14:20:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.