論文の概要: Golyadkin's Torment: Doppelgängers and Adversarial Vulnerability
- arxiv url: http://arxiv.org/abs/2410.13193v1
- Date: Thu, 17 Oct 2024 03:42:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:22:28.004132
- Title: Golyadkin's Torment: Doppelgängers and Adversarial Vulnerability
- Title(参考訳): Golyadkin's Torment: Doppelgängers and Adversarial Vulnerability
- Authors: George I. Kamberov,
- Abstract要約: 本論文は, 敵対的ドッペルガンガー (AD) の現象を定義し, 研究することを目的とする。
ADは、この論文で定義された計量に関して互いに近い入力である。
いくつかの分類問題は、下位クラスがあいまいであるため、ADロバスト分類器を含まないかもしれない。
本研究の目的は,機械学習システムの信頼性とセキュリティを大幅に向上することである。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Many machine learning (ML) classifiers are claimed to outperform humans, but they still make mistakes that humans do not. The most notorious examples of such mistakes are adversarial visual metamers. This paper aims to define and investigate the phenomenon of adversarial Doppelgangers (AD), which includes adversarial visual metamers, and to compare the performance and robustness of ML classifiers to human performance. We find that AD are inputs that are close to each other with respect to a perceptual metric defined in this paper. AD are qualitatively different from the usual adversarial examples. The vast majority of classifiers are vulnerable to AD and robustness-accuracy trade-offs may not improve them. Some classification problems may not admit any AD robust classifiers because the underlying classes are ambiguous. We provide criteria that can be used to determine whether a classification problem is well defined or not; describe the structure and attributes of an AD-robust classifier; introduce and explore the notions of conceptual entropy and regions of conceptual ambiguity for classifiers that are vulnerable to AD attacks, along with methods to bound the AD fooling rate of an attack. We define the notion of classifiers that exhibit hypersensitive behavior, that is, classifiers whose only mistakes are adversarial Doppelgangers. Improving the AD robustness of hyper-sensitive classifiers is equivalent to improving accuracy. We identify conditions guaranteeing that all classifiers with sufficiently high accuracy are hyper-sensitive. Our findings are aimed at significant improvements in the reliability and security of machine learning systems.
- Abstract(参考訳): 多くの機械学習(ML)分類器は人間より優れていると主張されているが、それでも人間にはできない誤りを犯している。
このような誤りの最も悪名高い例は、敵対的な視覚メタマーである。
本稿では, 対向的視覚メタマーを含む対向的Doppelgangers(AD)の現象を定義し, 解析し, ML分類器の性能と頑健さを人間のパフォーマンスと比較することを目的とする。
ADは,本論文で定義されている知覚的計量に対して,互いに近接した入力であることがわかった。
ADは通常の敵の例と定性的に異なる。
ほとんどの分類器はADに対して脆弱であり、ロバストネス・精度のトレードオフはそれらを改善することができないかもしれない。
いくつかの分類問題は、下位クラスがあいまいであるため、ADロバスト分類器を含まないかもしれない。
本稿では,AD攻撃に対して脆弱な分類器に対する概念的エントロピーの概念と概念的あいまいさの領域を,攻撃のAD不正率を拘束する手法とともに導入し,検討する。
我々は,過敏な行動を示す分類器,すなわち,対立するドッペルガンガーのみの誤りを示す分類器の概念を定義する。
高感度分類器のAD堅牢性の向上は精度の向上と同等である。
精度が十分高い全ての分類器が高感度であることを保証する条件を同定する。
本研究の目的は,機械学習システムの信頼性とセキュリティを大幅に向上することである。
関連論文リスト
- Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
アルツハイマー病(AD)の検出は、機械学習の分類モデルを使用する有望な研究領域として浮上している。
我々は、AD検出において、クラス内変異が重要な課題であると考え、ADを持つ個人は認知障害のスペクトルを示す。
本稿では,ソフトターゲット蒸留 (SoTD) とインスタンスレベルの再分散 (InRe) の2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-22T02:06:05Z) - Understanding the Detrimental Class-level Effects of Data Augmentation [63.1733767714073]
最適な平均精度を達成するには、ImageNetで最大20%の個々のクラスの精度を著しく損なうコストがかかる。
本稿では,DAがクラスレベルの学習力学とどのように相互作用するかを理解するためのフレームワークを提案する。
そこで本研究では, クラス条件拡張戦略により, 負の影響を受けるクラスの性能が向上することを示す。
論文 参考訳(メタデータ) (2023-12-07T18:37:43Z) - Improving Classifier Robustness through Active Generation of Pairwise
Counterfactuals [22.916599410472102]
本稿では,カウンターファクト・ジェネレーティブ・モデルを用いて多種多様なカウンターファクト・モデルを生成する新しいフレームワークを提案する。
少量の人間注釈付き対実データ(10%)で、学習ラベルを用いた対実データ拡張データセットを生成することができることを示す。
論文 参考訳(メタデータ) (2023-05-22T23:19:01Z) - The Overlooked Classifier in Human-Object Interaction Recognition [82.20671129356037]
クラス間の意味的相関を分類ヘッドにエンコードし,重みをHOIの言語埋め込みで初期化する。
我々は,LSE-Sign という新しい損失を,長い尾を持つデータセット上でのマルチラベル学習を強化するために提案する。
我々は,物体検出と人間のポーズを明確なマージンで求める最先端技術よりも優れた,検出不要なHOI分類を可能にする。
論文 参考訳(メタデータ) (2022-03-10T23:35:00Z) - The Impact of Using Regression Models to Build Defect Classifiers [13.840006058766766]
継続的欠陥数を欠陥クラスと非欠陥クラスに分類することは、よくあるプラクティスである。
両手法を用いて構築した欠陥分類器の性能と解釈を比較した。
論文 参考訳(メタデータ) (2022-02-12T22:12:55Z) - Learning-From-Disagreement: A Model Comparison and Visual Analytics
Framework [21.055845469999532]
本稿では,2つの分類モデルを視覚的に比較するフレームワークを提案する。
具体的には、不一致のインスタンスから学ぶために差別者を訓練する。
我々は、訓練された識別器を、異なるメタ特徴のSHAP値で解釈する。
論文 参考訳(メタデータ) (2022-01-19T20:15:35Z) - Learning and Evaluating Representations for Deep One-class
Classification [59.095144932794646]
ディープワンクラス分類のための2段階フレームワークを提案する。
まず,一級データから自己教師付き表現を学習し,学習した表現に基づいて一級分類器を構築する。
実験では、視覚領域の1クラス分類ベンチマークで最先端の性能を示す。
論文 参考訳(メタデータ) (2020-11-04T23:33:41Z) - Robustifying Binary Classification to Adversarial Perturbation [45.347651499585055]
本稿では,対向摂動を伴う二分分類の問題について考察する。
データを操作する際の敵の力を考慮に入れたマックスマージン分類器に一般化を導入する。
損失関数に関するいくつかの軽微な仮定の下では、勾配降下がその方向のRM分類器に収束することを理論的に示す。
論文 参考訳(メタデータ) (2020-10-29T07:20:37Z) - Robustness May Be at Odds with Fairness: An Empirical Study on
Class-wise Accuracy [85.20742045853738]
CNNは敵の攻撃に弱いことが広く知られている。
本稿では,対人訓練モデルのクラスワイド精度とロバスト性に関する実証的研究を提案する。
トレーニングデータセットが各クラスに同じ数のサンプルを持つ場合でも,精度と堅牢性にはクラス間差があることが判明した。
論文 参考訳(メタデータ) (2020-10-26T06:32:32Z) - Fundamental Tradeoffs between Invariance and Sensitivity to Adversarial
Perturbations [65.05561023880351]
敵の例は誤分類を引き起こすために作られた悪意のある入力である。
本稿では, 相補的障害モード, 不変性に基づく逆数例について検討する。
感度に基づく攻撃に対する防御は、不変性に基づく攻撃に対するモデルの精度を積極的に損なうことを示す。
論文 参考訳(メタデータ) (2020-02-11T18:50:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。