論文の概要: Reference-Based Post-OCR Processing with LLM for Diacritic Languages
- arxiv url: http://arxiv.org/abs/2410.13305v1
- Date: Thu, 17 Oct 2024 08:05:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:21:49.377242
- Title: Reference-Based Post-OCR Processing with LLM for Diacritic Languages
- Title(参考訳): 発音言語のためのLLMを用いた参照型後OCR処理
- Authors: Thao Do,
- Abstract要約: コンテンツ中心の電子書籍を参照ベースとして活用し、不完全なOCR生成テキストを訂正する手法を提案する。
この技術は、ダイアクリティカル言語のための高精度な擬似ページ・ツー・ページラベルを生成する。
パイプラインは、古いドキュメントから様々な種類のノイズを排除し、欠落した文字、単語、乱れたシーケンスといった問題に対処する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Extracting fine-grained OCR text from aged documents in diacritic languages remains challenging due to unexpected artifacts, time-induced degradation, and lack of datasets. While standalone spell correction approaches have been proposed, they show limited performance for historical documents due to numerous possible OCR error combinations and differences between modern and classical corpus distributions. We propose a method utilizing available content-focused ebooks as a reference base to correct imperfect OCR-generated text, supported by large language models. This technique generates high-precision pseudo-page-to-page labels for diacritic languages, where small strokes pose significant challenges in historical conditions. The pipeline eliminates various types of noise from aged documents and addresses issues such as missing characters, words, and disordered sequences. Our post-processing method, which generated a large OCR dataset of classical Vietnamese books, achieved a mean grading score of 8.72 on a 10-point scale. This outperformed the state-of-the-art transformer-based Vietnamese spell correction model, which scored 7.03 when evaluated on a sampled subset of the dataset. We also trained a baseline OCR model to assess and compare it with well-known engines. Experimental results demonstrate the strength of our baseline model compared to widely used open-source solutions. The resulting dataset will be released publicly to support future studies.
- Abstract(参考訳): ダイアクリティカルな言語の古文書から細かなOCRテキストを抽出することは、予期せぬ成果物、時間による劣化、データセットの欠如によって依然として困難である。
スタンドアロンのスペル補正手法が提案されているが、多くのOCRエラーの組み合わせや、現代と古典のコーパスの分布の違いにより、歴史文書のパフォーマンスが制限されている。
提案手法は,大言語モデルでサポートされている不完全なOCR生成テキストを訂正するための参照ベースとして,利用可能なコンテンツ中心の電子書籍を利用する手法である。
この手法は,小脳卒中が歴史的に重要な課題となるダイアクリティカル言語に対して,高精度な擬似ページ・ツー・ページラベルを生成する。
パイプラインは、古いドキュメントから様々な種類のノイズを排除し、欠落した文字、単語、乱れたシーケンスといった問題に対処する。
ベトナムの古典書のOCRデータセットを生成するポストプロセッシング法は,10点スケールで平均8.72のスコアを得た。
これにより、最先端のトランスフォーマーベースのベトナムのスペル補正モデルの性能が向上し、データセットのサンプルサブセットで評価すると7.03となった。
また、よく知られたエンジンと比較するために、ベースラインのOCRモデルを訓練した。
実験により, 広く使用されているオープンソースソリューションと比較して, ベースラインモデルの強みが示された。
結果として得られたデータセットは、将来の研究をサポートするために公開される。
関連論文リスト
- CLOCR-C: Context Leveraging OCR Correction with Pre-trained Language Models [0.0]
本稿では、コンテキストレバレッジOCR補正(CLOCR-C)を紹介する。
トランスフォーマーベースの言語モデル(LM)の組み込みとコンテキスト適応能力を使用して、OCRの品質を向上する。
本研究の目的は, LMがOCR後の修正を行うことができるか, 下流のNLPタスクを改善するか, 補正プロセスの一部として社会文化的コンテキストを提供することの価値を判断することである。
論文 参考訳(メタデータ) (2024-08-30T17:26:05Z) - Making Old Kurdish Publications Processable by Augmenting Available Optical Character Recognition Engines [1.174020933567308]
クルド人図書館には、クルディスタンに印刷装置が持ち込まれた初期の時代に印刷された多くの歴史出版物がある。
現在の光学文字認識(OCR)システムでは、多くの問題があるため、歴史的文書からテキストを抽出できない。
本研究では,GoogleによるオープンソースのOCRフレームワークであるTesseractバージョン5.0を採用し,様々な言語用テキストの抽出に利用した。
論文 参考訳(メタデータ) (2024-04-09T08:08:03Z) - Retrieval is Accurate Generation [99.24267226311157]
本稿では,支援文書の集合からコンテキスト認識句を選択する新しい手法を提案する。
本モデルでは,検索対象のベースラインの中で,最高の性能と低レイテンシを実現する。
論文 参考訳(メタデータ) (2024-02-27T14:16:19Z) - Data Generation for Post-OCR correction of Cyrillic handwriting [41.94295877935867]
本稿では,B'ezier曲線に基づく合成手書き生成エンジンの開発と応用に焦点を当てる。
このようなエンジンは、任意の量で非常にリアルな手書きテキストを生成し、それを利用して実質的なデータセットを作成する。
本データセットに手書きテキスト認識(HTR)モデルを適用し,OCRエラーを識別し,POCモデルトレーニングの基礎となる。
論文 参考訳(メタデータ) (2023-11-27T15:01:26Z) - Optimizing Factual Accuracy in Text Generation through Dynamic Knowledge
Selection [71.20871905457174]
言語モデル(LM)は、私たちが情報と対話する方法に革命をもたらしたが、しばしば非現実的なテキストを生成する。
従来の手法では、外部知識をテキスト生成の参照として使用して事実性を高めるが、無関係な参照の知識の混在に苦慮することが多い。
本稿では,テキスト生成プロセスを反復処理に分割するDKGenを提案する。
論文 参考訳(メタデータ) (2023-08-30T02:22:40Z) - User-Centric Evaluation of OCR Systems for Kwak'wala [92.73847703011353]
OCRを利用すると、文化的に価値ある文書の書き起こしに費やした時間を50%以上削減できることを示す。
この結果から,OCRツールが下流言語ドキュメントや再生作業において持つ潜在的なメリットが示された。
論文 参考訳(メタデータ) (2023-02-26T21:41:15Z) - Ensemble Transfer Learning for Multilingual Coreference Resolution [60.409789753164944]
非英語で作業する場合に頻繁に発生する問題は、注釈付きトレーニングデータの不足である。
我々は,様々なトランスファー学習技術を組み合わせた,シンプルだが効果的なアンサンブルベースのフレームワークを設計する。
また、ウィキペディアアンカーテキストを利用して、コア参照解決モデルをブートストラップする低コストのTL手法を提案する。
論文 参考訳(メタデータ) (2023-01-22T18:22:55Z) - CSCD-NS: a Chinese Spelling Check Dataset for Native Speakers [62.61866477815883]
CSCD-NSは中国初のネイティブ話者向けスペルチェックデータセットである。
CSCD-NSはスケールが10倍大きく、誤差分布が異なる。
本稿では,入力過程をシミュレーションする新しい手法を提案する。
論文 参考訳(メタデータ) (2022-11-16T09:25:42Z) - Lexically Aware Semi-Supervised Learning for OCR Post-Correction [90.54336622024299]
世界中の多くの言語における既存の言語データの多くは、非デジタル化された書籍や文書に閉じ込められている。
従来の研究は、あまり良くない言語を認識するためのニューラル・ポスト・コレクション法の有用性を実証してきた。
そこで本研究では,生画像を利用した半教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-11-04T04:39:02Z) - Offline Handwritten Chinese Text Recognition with Convolutional Neural
Networks [5.984124397831814]
本稿では,畳み込みニューラルネットワークのみを用いてモデルを構築し,CTCを損失関数として利用する。
ICDAR 2013のコンペでは6.81%の文字誤り率(CER)を達成した。
論文 参考訳(メタデータ) (2020-06-28T14:34:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。