論文の概要: Statistical testing on generative AI anomaly detection tools in Alzheimer's Disease diagnosis
- arxiv url: http://arxiv.org/abs/2410.13363v1
- Date: Thu, 17 Oct 2024 09:15:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:19:00.559662
- Title: Statistical testing on generative AI anomaly detection tools in Alzheimer's Disease diagnosis
- Title(参考訳): アルツハイマー病診断における生成型AI異常検出ツールの統計的検討
- Authors: Rosemary He, Ichiro Takeuchi,
- Abstract要約: 生成AIは、医療画像における異常検出の可能性を示している。
我々は、選択的推論を用いてこの問題を解決し、アルツハイマーの予測のための信頼できる生成AI手法を開発することを提案する。
- 参考スコア(独自算出の注目度): 16.73336092521471
- License:
- Abstract: Alzheimer's Disease is challenging to diagnose due to our limited understanding of its mechanism and large heterogeneity among patients. Neurodegeneration is studied widely as a biomarker for clinical diagnosis, which can be measured from time series MRI progression. On the other hand, generative AI has shown promise in anomaly detection in medical imaging and used for tasks including tumor detection. However, testing the reliability of such data-driven methods is non-trivial due to the issue of double-dipping in hypothesis testing. In this work, we propose to solve this issue with selective inference and develop a reliable generative AI method for Alzheimer's prediction. We show that compared to traditional statistical methods with highly inflated p-values, selective inference successfully controls the false discovery rate under the desired alpha level while retaining statistical power. In practice, our pipeline could assist clinicians in Alzheimer's diagnosis and early intervention.
- Abstract(参考訳): アルツハイマー病は、そのメカニズムと患者間の大きな異質性についての理解が限られているため、診断が困難である。
神経変性は臨床診断のためのバイオマーカーとして広く研究されており、時系列MRIの進歩から測定することができる。
一方、生成AIは、医療画像における異常検出の可能性を示しており、腫瘍検出などのタスクに使用されている。
しかし,データ駆動手法の信頼性の検証は,仮説テストにおける二重ダイッピングの問題から容易ではない。
本研究では、選択的推論を用いてこの問題を解決し、アルツハイマーの予測のための信頼できる生成AI手法を開発することを提案する。
高度に膨らんだp値を持つ従来の統計手法と比較して, 統計的パワーを維持しつつ, 所望のαレベル下での偽発見率を選択的推論で制御できることが示唆された。
実際にこのパイプラインはアルツハイマー病の診断と早期介入に役立てることができた。
関連論文リスト
- MINDSETS: Multi-omics Integration with Neuroimaging for Dementia Subtyping and Effective Temporal Study [0.7751705157998379]
アルツハイマー病(AD)と血管性認知症(VaD)は最も多い認知症である。
本稿では、ADとVaDを正確に区別する革新的なマルチオミクス手法を提案し、89.25%の精度で診断を行う。
論文 参考訳(メタデータ) (2024-11-06T10:13:28Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - Intelligent Diagnosis of Alzheimer's Disease Based on Machine Learning [24.467566885575998]
この研究は、アルツハイマー病神経画像イニシアチブ(ADNI)データセットに基づいている。
アルツハイマー病(AD)の早期発見と進行の解明を目的とする。
論文 参考訳(メタデータ) (2024-02-13T15:43:30Z) - Automatic Detection of Alzheimer's Disease with Multi-Modal Fusion of
Clinical MRI Scans [8.684668542584701]
1500万人のアメリカ人が2060年までに臨床ADまたは軽度認知障害を発症する。
我々は2種類の脳MRIで疾患のステージを予測することを目的としている。
我々は、T1とFLAIRのMRIスキャンから相補的な情報の相乗効果を学習するAlexNetベースのディープラーニングモデルを設計する。
論文 参考訳(メタデータ) (2023-11-30T04:32:28Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
関連疾患に対するラベル付きデータの不足は、正確な診断にとって大きな課題となる。
本稿では,診断エージェントの学習を指導するための事前知識を導入する,新しい深層強化学習フレームワークを提案する。
提案手法の性能はNIHX-ray 14とCheXpertデータセットを用いて実証した。
論文 参考訳(メタデータ) (2023-06-02T01:46:31Z) - Early Detection of Alzheimer's Disease using Bottleneck Transformers [1.14219428942199]
本稿では,アルツハイマー病の早期発見のために,自己注意型ボトルネックトランスフォーマーのアンサンブルを用いた新しいアプローチを提案する。
提案手法は広く受け入れられているADNIデータセット上でテストされ、精度、精度、リコール、F1スコア、ROC-AUCスコアをパフォーマンス指標として評価している。
論文 参考訳(メタデータ) (2023-05-01T16:17:52Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
臨床診断は、臨床ノートに基づいて患者に診断符号を割り当てることを目的としており、臨床意思決定において重要な役割を担っている。
本稿では,臨床自動診断のための継承誘導階層と共起グラフの伝播を組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-01-27T13:16:51Z) - Predicting Parkinson's Disease with Multimodal Irregularly Collected
Longitudinal Smartphone Data [75.23250968928578]
パーキンソン病は神経疾患であり、高齢者に多い。
伝統的に病気を診断する方法は、一連の活動テストの品質に関する個人的主観的臨床評価に依存している。
そこで本研究では,スマートフォンが収集した生の行動データを用いて,パーキンソン病を予測するための時系列に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2020-09-25T01:50:15Z) - Application of Machine Learning to Predict the Risk of Alzheimer's
Disease: An Accurate and Practical Solution for Early Diagnostics [1.1470070927586016]
アルツハイマー病(AD)は500万人以上のアメリカ人の認知能力を悪化させ、医療システムに多大な負担をかけている。
本稿では,医療画像のない,臨床訪問や検査の少ないAD開発のための機械学習予測モデルを提案する。
本モデルは,2つの顕著な研究結果から,人口統計,バイオマーカー,認知テストデータを用いて訓練し,検証した。
論文 参考訳(メタデータ) (2020-06-02T14:52:51Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。