論文の概要: Feature Extraction Reimagined: Achieving Superior Accuracy in Camera Calibration
- arxiv url: http://arxiv.org/abs/2410.13371v2
- Date: Fri, 15 Nov 2024 03:07:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:36:00.018621
- Title: Feature Extraction Reimagined: Achieving Superior Accuracy in Camera Calibration
- Title(参考訳): 特徴抽出:カメラキャリブレーションにおける上位精度の実現
- Authors: Zezhun Shi,
- Abstract要約: 本稿では,キャリブレーションにおける重要なステップである特徴抽出の精度向上に焦点を当てた。
パターン中心の異なる角度の複数のチェッカーボードパターンを合成する新しい動的キャリブレーションターゲットを提案する。
また、デフォーカス効果を考慮し、より物理的に現実的なモデルを提供する特徴改善の新たなコスト関数を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Camera calibration is crucial for 3D vision applications. This paper focuses on improving the accuracy of feature extraction, which is a key step in calibration. We address the aliasing problem of star-shaped pattern by introducing a novel dynamic calibration target that synthesizes multiple checkerboard patterns of different angle around pattern center, which significantly improves feature refinement accuracy. Additionally, we propose a novel cost function of feature refinement that accounts for defocus effect, offering a more physically realistic model compared to existing symmetry based method, experiment on a large dataset demonstrate significant improvements in calibration accuracy with reduced computation time. Our code is available from https://github.com/spdfghi/Feature-Extraction-Reimagined-Achieving-Superior-Accuracy-in-Camera-Calib ration.git.
- Abstract(参考訳): カメラのキャリブレーションは3D視覚アプリケーションには不可欠である。
本稿では,キャリブレーションにおける重要なステップである特徴抽出の精度向上に焦点を当てた。
パターン中心の異なる角度の複数のチェッカーボードパターンを合成する動的キャリブレーションターゲットを導入し,特徴改善の精度を大幅に向上させることにより,星形パターンのエイリアス化問題に対処する。
さらに,デフォーカス効果を考慮に入れた特徴改善のコスト関数を提案し,既存の対称性に基づく手法と比較して,よりリアルなモデルを提供するとともに,計算時間を短縮してキャリブレーション精度を大幅に向上させる実験を行った。
私たちのコードはhttps://github.com/spdfghi/Feature-Extraction-Reimagined-Achieving-Superior-Accuracy-in-Camera-Calib ration.gitから入手可能です。
関連論文リスト
- EasyHeC: Accurate and Automatic Hand-eye Calibration via Differentiable
Rendering and Space Exploration [49.90228618894857]
我々は、マーカーレスでホワイトボックスであり、より優れた精度とロバスト性を提供するEasyHeCと呼ばれる手眼校正の新しいアプローチを導入する。
我々は,2つの重要な技術 – レンダリングベースのカメラポーズの最適化と整合性に基づく共同空間探索 – を利用することを提案する。
本評価は,合成および実世界のデータセットにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-02T03:49:54Z) - Neural Lens Modeling [50.57409162437732]
NeuroLens(ニューロレンス)は、点投影と光線鋳造に使用できる歪みと磁化のための神経レンズモデルである。
古典的なキャリブレーションターゲットを使用してプリキャプチャのキャリブレーションを行うことができ、後に3D再構成の際にキャリブレーションやリファインメントを行うために使用できる。
このモデルは、多くのレンズタイプにまたがって一般化されており、既存の3D再構成とレンダリングシステムとの統合は容易である。
論文 参考訳(メタデータ) (2023-04-10T20:09:17Z) - TartanCalib: Iterative Wide-Angle Lens Calibration using Adaptive
SubPixel Refinement of AprilTags [23.568127229446965]
現在の最先端技術による広角レンズの校正は、エッジの極端に歪みがあるため、結果を得られない。
精度の高い広角キャリブレーション手法を提案する。
論文 参考訳(メタデータ) (2022-10-05T18:57:07Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
マルチビューSfM, オードメトリ, SLAMセットアップにおける視覚的残差の共分散モデルの導出を行う。
我々は、合成データと実データを用いてモデルを検証し、それを光度および特徴量に基づくバンドル調整に統合する。
論文 参考訳(メタデータ) (2022-02-01T21:21:56Z) - Pixel-Perfect Structure-from-Motion with Featuremetric Refinement [96.73365545609191]
複数視点からの低レベル画像情報を直接アライメントすることで、動きからの2つの重要なステップを洗練する。
これにより、様々なキーポイント検出器のカメラポーズとシーン形状の精度が大幅に向上する。
本システムは,大規模な画像コレクションに容易にスケールできるので,クラウドソースによる大規模なローカライゼーションを実現することができる。
論文 参考訳(メタデータ) (2021-08-18T17:58:55Z) - Dynamic Event Camera Calibration [27.852239869987947]
最初の動的イベントカメラキャリブレーションアルゴリズムを提案する。
カメラとキャリブレーションパターンの間の相対的な動きで捉えたイベントから直接キャリブレーションする。
その結果, 得られたキャリブレーション法は, 10秒未満のデータ列から, 極めて有用かつ確実なキャリブレーションを行うことができた。
論文 参考訳(メタデータ) (2021-07-14T14:52:58Z) - How to Calibrate Your Event Camera [58.80418612800161]
画像再構成を用いた汎用イベントカメラキャリブレーションフレームワークを提案する。
ニューラルネットワークに基づく画像再構成は,イベントカメラの内在的・外在的キャリブレーションに適していることを示す。
論文 参考訳(メタデータ) (2021-05-26T07:06:58Z) - ACSC: Automatic Calibration for Non-repetitive Scanning Solid-State
LiDAR and Camera Systems [11.787271829250805]
Solid-State LiDAR(SSL)は、環境から3Dポイントクラウドを低コストで効率的に取得することを可能にする。
非繰り返し走査型SSLとカメラシステムのための完全自動校正法を提案する。
実環境下でのLiDARとカメラセンサの組み合わせについて検討した。
論文 参考訳(メタデータ) (2020-11-17T09:11:28Z) - Superaccurate Camera Calibration via Inverse Rendering [0.19336815376402716]
逆レンダリングの原理を用いたカメラキャリブレーションの新しい手法を提案する。
検出された特徴点のみに頼らず、内部パラメータの推定と校正対象のポーズを用いて光学的特徴の非フォトリアリスティックな等価性を暗黙的に描画する。
論文 参考訳(メタデータ) (2020-03-20T10:26:16Z) - Calibrating Deep Neural Networks using Focal Loss [77.92765139898906]
ミススキャリブレーション(Miscalibration)は、モデルの信頼性と正しさのミスマッチである。
焦点損失は、既に十分に校正されたモデルを学ぶことができることを示す。
ほぼすべてのケースにおいて精度を損なうことなく,最先端のキャリブレーションを達成できることを示す。
論文 参考訳(メタデータ) (2020-02-21T17:35:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。