Railway LiDAR semantic segmentation based on intelligent semi-automated data annotation
- URL: http://arxiv.org/abs/2410.13383v2
- Date: Tue, 19 Nov 2024 08:49:45 GMT
- Title: Railway LiDAR semantic segmentation based on intelligent semi-automated data annotation
- Authors: Florian Wulff, Bernd Schaeufele, Julian Pfeifer, Ilja Radusch,
- Abstract summary: We present an approach for a point-wise 3D semantic segmentation based on the 2DPass network architecture using scans and images jointly.
We also present a semi-automated intelligent data annotation approach, which we use to efficiently and accurately label the required dataset recorded on a railway track in Germany.
Our contributions are threefold: We annotate rail data including camera and LiDAR data from the railway environment, transfer label the raw LiDAR point clouds using an image segmentation network, and train a state-of-the-art 3D LiDAR semantic segmentation network efficiently leveraging active learning.
- Score: 0.48212500317840945
- License:
- Abstract: Automated vehicles rely on an accurate and robust perception of the environment. Similarly to automated cars, highly automated trains require an environmental perception. Although there is a lot of research based on either camera or LiDAR sensors in the automotive domain, very few contributions for this task exist yet for automated trains. Additionally, no public dataset or described approach for a 3D LiDAR semantic segmentation in the railway environment exists yet. Thus, we propose an approach for a point-wise 3D semantic segmentation based on the 2DPass network architecture using scans and images jointly. In addition, we present a semi-automated intelligent data annotation approach, which we use to efficiently and accurately label the required dataset recorded on a railway track in Germany. To improve performance despite a still small number of labeled scans, we apply an active learning approach to intelligently select scans for the training dataset. Our contributions are threefold: We annotate rail data including camera and LiDAR data from the railway environment, transfer label the raw LiDAR point clouds using an image segmentation network, and train a state-of-the-art 3D LiDAR semantic segmentation network efficiently leveraging active learning. The trained network achieves good segmentation results with a mean IoU of 71.48% of 9 classes.
Related papers
- Accurate Automatic 3D Annotation of Traffic Lights and Signs for Autonomous Driving [0.0]
3D detection of traffic management objects, such as traffic lights and road signs, is vital for self-driving cars.
This paper introduces a novel method for automatically generating 3D bounding box annotations for traffic lights and signs, effective up to a range of 200 meters.
arXiv Detail & Related papers (2024-09-19T09:50:03Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - AutoSynth: Learning to Generate 3D Training Data for Object Point Cloud
Registration [69.21282992341007]
Auto Synth automatically generates 3D training data for point cloud registration.
We replace the point cloud registration network with a much smaller surrogate network, leading to a $4056.43$ speedup.
Our results on TUD-L, LINEMOD and Occluded-LINEMOD evidence that a neural network trained on our searched dataset yields consistently better performance than the same one trained on the widely used ModelNet40 dataset.
arXiv Detail & Related papers (2023-09-20T09:29:44Z) - LiDAR-BEVMTN: Real-Time LiDAR Bird's-Eye View Multi-Task Perception Network for Autonomous Driving [12.713417063678335]
We present a real-time multi-task convolutional neural network for LiDAR-based object detection, semantics, and motion segmentation.
We propose a novel Semantic Weighting and Guidance (SWAG) module to transfer semantic features for improved object detection selectively.
We achieve state-of-the-art results for two tasks, semantic and motion segmentation, and close to state-of-the-art performance for 3D object detection.
arXiv Detail & Related papers (2023-07-17T21:22:17Z) - TrainSim: A Railway Simulation Framework for LiDAR and Camera Dataset
Generation [1.2165229201148093]
This paper presents a visual simulation framework able to generate realistic railway scenarios in a virtual environment.
It automatically produces inertial data and labeled datasets from emulated LiDARs and cameras.
arXiv Detail & Related papers (2023-02-28T11:00:13Z) - SUPS: A Simulated Underground Parking Scenario Dataset for Autonomous
Driving [41.221988979184665]
SUPS is a simulated dataset for underground automatic parking.
It supports multiple tasks with multiple sensors and multiple semantic labels aligned with successive images.
We also evaluate the state-of-the-art SLAM algorithms and perception models on our dataset.
arXiv Detail & Related papers (2023-02-25T02:59:12Z) - Real-Time And Robust 3D Object Detection with Roadside LiDARs [20.10416681832639]
We design a 3D object detection model that can detect traffic participants in roadside LiDARs in real-time.
Our model uses an existing 3D detector as a baseline and improves its accuracy.
We make a significant contribution with our LiDAR-based 3D detector that can be used for smart city applications.
arXiv Detail & Related papers (2022-07-11T21:33:42Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
Two critical sensors for 3D perception in autonomous driving are the camera and the LiDAR.
fusing these two modalities can significantly boost the performance of 3D perception models.
We benchmark the state-of-the-art fusion methods for the first time.
arXiv Detail & Related papers (2022-05-30T09:35:37Z) - LiDAR-based 4D Panoptic Segmentation via Dynamic Shifting Network [56.71765153629892]
We propose the Dynamic Shifting Network (DS-Net), which serves as an effective panoptic segmentation framework in the point cloud realm.
Our proposed DS-Net achieves superior accuracies over current state-of-the-art methods in both tasks.
We extend DS-Net to 4D panoptic LiDAR segmentation by the temporally unified instance clustering on aligned LiDAR frames.
arXiv Detail & Related papers (2022-03-14T15:25:42Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
We propose a unified and learning based approach to the 3D MOT problem.
We employ a Neural Message Passing network for data association that is fully trainable.
We show the merit of the proposed approach on the publicly available nuScenes dataset by achieving state-of-the-art performance of 65.6% AMOTA and 58% fewer ID-switches.
arXiv Detail & Related papers (2021-04-23T17:59:28Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
We propose an effective training data generation process by fitting a 3D car model with dynamic parts to vehicles in real images.
Our approach is fully automatic without any human interaction.
We present a multi-task network for VUS parsing and a multi-stream network for VHI parsing.
arXiv Detail & Related papers (2020-12-15T03:03:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.