論文の概要: Progressive Mixed-Precision Decoding for Efficient LLM Inference
- arxiv url: http://arxiv.org/abs/2410.13461v1
- Date: Thu, 17 Oct 2024 11:46:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:21:33.704279
- Title: Progressive Mixed-Precision Decoding for Efficient LLM Inference
- Title(参考訳): 効率的なLLM推論のためのプログレッシブ混合精度復号法
- Authors: Hao Mark Chen, Fuwen Tan, Alexandros Kouris, Royson Lee, Hongxiang Fan, Stylianos I. Venieris,
- Abstract要約: 我々は,デコーディングのメモリバウンドネスに対処するために,プログレッシブ・ミックス・プレシジョン・デコーディング(PMPD)を導入する。
PMPDはfp16モデルの行列ベクトル乗算において1.4$-$12.2$times$ Speedupを達成する。
我々の手法は、fp16モデルよりも3.8$-$8.0$times$、均一量子化アプローチよりも1.54$times$のスループット向上をもたらす。
- 参考スコア(独自算出の注目度): 49.05448842542558
- License:
- Abstract: In spite of the great potential of large language models (LLMs) across various tasks, their deployment on resource-constrained devices remains challenging due to their excessive computational and memory demands. Quantization has emerged as an effective solution by storing weights in reduced precision. However, utilizing low precisions (i.e.~2/3-bit) to substantially alleviate the memory-boundedness of LLM decoding, still suffers from prohibitive performance drop. In this work, we argue that existing approaches fail to explore the diversity in computational patterns, redundancy, and sensitivity to approximations of the different phases of LLM inference, resorting to a uniform quantization policy throughout. Instead, we propose a novel phase-aware method that selectively allocates precision during different phases of LLM inference, achieving both strong context extraction during prefill and efficient memory bandwidth utilization during decoding. To further address the memory-boundedness of the decoding phase, we introduce Progressive Mixed-Precision Decoding (PMPD), a technique that enables the gradual lowering of precision deeper in the generated sequence, together with a spectrum of precision-switching schedulers that dynamically drive the precision-lowering decisions in either task-adaptive or prompt-adaptive manner. Extensive evaluation across diverse language tasks shows that when targeting Nvidia GPUs, PMPD achieves 1.4$-$12.2$\times$ speedup in matrix-vector multiplications over fp16 models, while when targeting an LLM-optimized NPU, our approach delivers a throughput gain of 3.8$-$8.0$\times$ over fp16 models and up to 1.54$\times$ over uniform quantization approaches while preserving the output quality.
- Abstract(参考訳): 様々なタスクにわたる大きな言語モデル(LLM)の可能性にもかかわらず、リソースに制約のあるデバイスへの展開は、計算とメモリの過剰な要求のため、依然として困難である。
量子化は、重量を少ない精度で保存することで有効な解として現れた。
しかし、LLMデコーディングのメモリバウンドネスを大幅に軽減するために低精度(すなわち2/3ビット)を使用すると、依然として性能低下に悩まされる。
本研究では,計算パターンの多様性,冗長性,およびLLM推論の異なる位相の近似に対する感度について,一様量子化ポリシに頼って検討することができないことを論じる。
そこで本研究では,LLM推論の異なるフェーズの精度を選択的に割り当て,プリフィル時の強いコンテキスト抽出とデコード時のメモリ帯域幅の効率的な利用を両立させる新しい位相認識手法を提案する。
さらに、デコードフェーズのメモリバウンドネスに対処するため、プログレッシブ・ミックス・プレシジョン・デコーディング(PMPD)を導入する。これは、タスク適応的もしくは即時適応的な方法で精度低下決定を動的に駆動する精度切替スケジューラのスペクトルとともに、生成シーケンスのより深い精度の段階的な低下を可能にする技術である。
多様な言語タスクを対象とした大規模な評価では、PMPDはfp16モデルよりも1.4$-$12.2$\times$行列ベクトル乗算のスピードアップを達成する一方で、LLM最適化NPUをターゲットとする場合、fp16モデルよりも3.8$-$8.0$\times$、出力品質を保ちながら1.54$\times$のスループット向上を実現している。
関連論文リスト
- SubZero: Random Subspace Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning [66.27334633749734]
言語モデルのサイズが大きくなるにつれて、バックプロパゲーションに対するメモリ要求が増加する。
Zeroth-order (ZOZO) 最適化手法はメモリ効率の代替手段を提供する。
本稿では,SubZeroがファインチューニングを強化し,通常のZOZO手法と比較して高速な結果が得られることを示す。
論文 参考訳(メタデータ) (2024-10-11T17:01:43Z) - Efficient Arbitrary Precision Acceleration for Large Language Models on GPU Tensor Cores [3.6385567224218556]
大規模言語モデル(LLM)は広く応用されているが、効率的な推論では課題に直面している。
本稿では、並列計算を容易にし、対称量子化をサポートする新しいバイポーラ-INTデータフォーマットを提案する。
ビットレベルで分解・復元する任意の精度行列乗算方式を実装し,フレキシブルな精度を実現する。
論文 参考訳(メタデータ) (2024-09-26T14:17:58Z) - Tender: Accelerating Large Language Models via Tensor Decomposition and Runtime Requantization [0.6445087473595953]
大規模言語モデル(LLM)は、機械学習における様々なタスクにおいて優れたパフォーマンスを示す。
LLM推論のデプロイは、高い計算とメモリ要求のために問題となる。
我々は,低精度でLLM推論を効率的に展開できるアルゴリズム-ハードウェア共設計ソリューションであるテンダーを提案する。
論文 参考訳(メタデータ) (2024-06-16T09:51:55Z) - Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient [57.9629676017527]
大規模言語モデルを用いた最適化に基づく構造解析手法を提案する。
我々は,プルーニングモデルの損失を最適化することにより,確率空間におけるプルーニングマスクを直接学習する。
A100 GPUで13Bモデルに対して約35GBのメモリで2.7時間動作させる。
論文 参考訳(メタデータ) (2024-06-15T09:31:03Z) - ShiftAddLLM: Accelerating Pretrained LLMs via Post-Training Multiplication-Less Reparameterization [13.622268474310918]
ShiftAddLLMは大規模言語モデルの効率的な乗算自由モデルである。
5.6および22.7ポイントのパープレキシティ改善を同等または低いレイテンシで達成する。
5つのLLMファミリーと8つのタスクの実験は、ShiftAddLLMの有効性を一貫して検証している。
論文 参考訳(メタデータ) (2024-06-10T02:47:55Z) - SliM-LLM: Salience-Driven Mixed-Precision Quantization for Large Language Models [67.67135738642547]
後学習量子化(PTQ)は、大規模言語モデル(LLM)において研究される強力な圧縮手法である。
既存のPTQ法は、特に4ビット幅以下では、精度と効率の点で理想的ではない。
本稿では,LSM,すなわちSliM-LLMに対するSalience-Driven Mixed-Precision Quantizationスキームを提案する。
論文 参考訳(メタデータ) (2024-05-23T16:21:48Z) - Lossless Acceleration of Large Language Model via Adaptive N-gram Parallel Decoding [2.642212767247493]
適応的なN-gram並列デコーディング(ANPD)を導入し,複数のトークンを同時に生成することで推論を高速化する。
ANPDは、処理速度を向上しながら、元の出力の完全性を維持する。
実験では、LLaMAのようなモデルとその微調整されたモデルが3.67倍の速度向上を示した。
論文 参考訳(メタデータ) (2024-04-10T16:11:09Z) - DB-LLM: Accurate Dual-Binarization for Efficient LLMs [83.70686728471547]
大規模言語モデル(LLM)は自然言語処理の分野を著しく進歩させてきた。
既存の超低ビット量子化は、常に深刻な精度低下を引き起こす。
本稿では,LLM,すなわちDB-LLMのための新しいデュアルバイナライズ手法を提案する。
論文 参考訳(メタデータ) (2024-02-19T09:04:30Z) - Modality Plug-and-Play: Elastic Modality Adaptation in Multimodal LLMs
for Embodied AI [10.82017289243097]
LLM(Large Language Models)は、事前訓練されたエンコーダを通じて様々な入力データモダリティを推論することができる。
m-LLMは、既存の最良のスキームと比較してタスクの精度を最大4%改善する。
論文 参考訳(メタデータ) (2023-12-13T04:08:59Z) - Mixed Precision Low-bit Quantization of Neural Network Language Models
for Speech Recognition [67.95996816744251]
長期間のメモリリカレントニューラルネットワーク(LSTM-RNN)とトランスフォーマーで表される最先端言語モデル(LM)は、実用アプリケーションではますます複雑で高価なものになりつつある。
現在の量子化法は、均一な精度に基づいており、量子化誤差に対するLMの異なる部分での様々な性能感度を考慮できない。
本稿では,新しい混合精度ニューラルネットワークLM量子化法を提案する。
論文 参考訳(メタデータ) (2021-11-29T12:24:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。