論文の概要: Anda: Unlocking Efficient LLM Inference with a Variable-Length Grouped Activation Data Format
- arxiv url: http://arxiv.org/abs/2411.15982v1
- Date: Sun, 24 Nov 2024 20:59:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:22:27.629220
- Title: Anda: Unlocking Efficient LLM Inference with a Variable-Length Grouped Activation Data Format
- Title(参考訳): Anda: 可変長グループアクティベーションデータフォーマットによる効率的なLCM推論
- Authors: Chao Fang, Man Shi, Robin Geens, Arne Symons, Zhongfeng Wang, Marian Verhelst,
- Abstract要約: 量子化大言語モデル(LLM)は低ビット整数(INT)重みを利用し、浮動小数点(FP)アクティベーションを保持する。
これにより、コストのかかるメモリアクセスと計算に関連するFPアクティベーションに、エネルギとレイテンシのボトルネックがシフトする。
既存のLCMアクセラレータは、FP計算とデータ移動を協調的に最適化する可能性を見越して、計算最適化に重点を置いている。
- 参考スコア(独自算出の注目度): 5.527166214435735
- License:
- Abstract: The widely-used, weight-only quantized large language models (LLMs), which leverage low-bit integer (INT) weights and retain floating-point (FP) activations, reduce storage requirements while maintaining accuracy. However, this shifts the energy and latency bottlenecks towards the FP activations that are associated with costly memory accesses and computations. Existing LLM accelerators focus primarily on computation optimizations, overlooking the potential of jointly optimizing FP computations and data movement, particularly for the dominant FP-INT GeMM operations in LLM inference. To address these challenges, we investigate the sensitivity of activation precision across various LLM modules and its impact on overall model accuracy. Based on our findings, we first propose the Anda data type: an adaptive data format with group-shared exponent bits and dynamic mantissa bit allocation. Secondly, we develop an iterative post-training adaptive precision search algorithm that optimizes the bit-width for different LLM modules to balance model accuracy, energy efficiency, and inference speed. Lastly, a suite of hardware optimization techniques is proposed to maximally exploit the benefits of the Anda format. These include a bit-plane-based data organization scheme, Anda-enhanced processing units with bit-serial computation, and a runtime bit-plane Anda compressor to simultaneously optimize storage, computation, and memory footprints. Our evaluations on FPINT GeMM operations show that Anda achieves a 2.4x speedup, 4.0x area efficiency, and 3.1x energy efficiency improvement on average for popular LLMs including OPT, LLaMA, and LLaMA-2 series over the GPU-like FP-FP baseline. Anda demonstrates strong adaptability across various application scenarios, accuracy requirements, and system performance, enabling efficient LLM inference across a wide range of deployment scenarios.
- Abstract(参考訳): 低ビット整数(INT)重みを利用し、浮動小数点(FP)アクティベーションを保ち、精度を維持しながらストレージ要求を減少させる。
しかし、これは、コストのかかるメモリアクセスと計算に関連するFPアクティベーションに、エネルギーとレイテンシのボトルネックをシフトさせる。
既存のLLMアクセラレータは計算最適化に重点を置いており、特にLLM推論における支配的なFP-INT GeMM演算において、FP計算とデータ移動を共同で最適化する可能性を見越している。
これらの課題に対処するために、様々なLCMモジュール間のアクティベーション精度の感度と、モデル全体の精度への影響について検討する。
そこで我々はまず,グループ共有の指数ビットと動的マンティサビットを割り当てた適応型データ形式であるAndaデータ型を提案する。
第2に、モデル精度、エネルギー効率、推論速度のバランスをとるために、異なるLCMモジュールのビット幅を最適化する反復学習後適応精度探索アルゴリズムを開発する。
最後に、Andaフォーマットの利点を最大限活用するために、一連のハードウェア最適化手法が提案されている。
これらにはビットプレーンベースのデータ構成スキーム、ビットシリアル計算を備えたAnda拡張処理ユニット、ストレージ、計算、メモリフットプリントを同時に最適化する実行時ビットプレーンAnda圧縮機が含まれる。
FPINT GeMM操作における評価から,GPUライクなFP-FPベースライン上で,OPT,LLaMA,LLaMA-2シリーズを含む一般的なLLMにおいて,Andaは2.4倍の高速化,4.0倍の面積効率,3.1倍のエネルギー効率向上を実現していることがわかった。
Andaは、さまざまなアプリケーションシナリオ、精度要件、システムパフォーマンスに強い適応性を示し、幅広いデプロイメントシナリオにまたがる効率的なLLM推論を可能にします。
関連論文リスト
- Progressive Mixed-Precision Decoding for Efficient LLM Inference [49.05448842542558]
我々は,デコーディングのメモリバウンドネスに対処するために,プログレッシブ・ミックス・プレシジョン・デコーディング(PMPD)を導入する。
PMPDはfp16モデルの行列ベクトル乗算において1.4$-$12.2$times$ Speedupを達成する。
我々の手法は、fp16モデルよりも3.8$-$8.0$times$、均一量子化アプローチよりも1.54$times$のスループット向上をもたらす。
論文 参考訳(メタデータ) (2024-10-17T11:46:33Z) - EPS-MoE: Expert Pipeline Scheduler for Cost-Efficient MoE Inference [49.94169109038806]
本稿では,新しいパイプラインスケジューラであるEPS-MoEを紹介する。
その結果,既存の並列推論手法に比べて,プリフィルスループットが平均21%向上していることが判明した。
論文 参考訳(メタデータ) (2024-10-16T05:17:49Z) - Efficient Arbitrary Precision Acceleration for Large Language Models on GPU Tensor Cores [3.6385567224218556]
大規模言語モデル(LLM)は広く応用されているが、効率的な推論では課題に直面している。
本稿では、並列計算を容易にし、対称量子化をサポートする新しいバイポーラ-INTデータフォーマットを提案する。
ビットレベルで分解・復元する任意の精度行列乗算方式を実装し,フレキシブルな精度を実現する。
論文 参考訳(メタデータ) (2024-09-26T14:17:58Z) - 3-in-1: 2D Rotary Adaptation for Efficient Finetuning, Efficient Batching and Composability [6.451743797015637]
大規模言語モデル (LLM) に適応するために, 簡単な2次元回転を用いた新しい手法RoAdを導入する。
RoAdはパラメータ効率が非常に高く、8つの常識推論タスク、4つの算術推論タスクと0.1%のトレーニング可能なパラメータを提供する。
論文 参考訳(メタデータ) (2024-08-28T08:45:29Z) - ShiftAddLLM: Accelerating Pretrained LLMs via Post-Training Multiplication-Less Reparameterization [13.622268474310918]
ShiftAddLLMは大規模言語モデルの効率的な乗算自由モデルである。
5.6および22.7ポイントのパープレキシティ改善を同等または低いレイテンシで達成する。
5つのLLMファミリーと8つのタスクの実験は、ShiftAddLLMの有効性を一貫して検証している。
論文 参考訳(メタデータ) (2024-06-10T02:47:55Z) - Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark [166.40879020706151]
本稿では、微調整時のメモリコスト低減のためのソリューションとして、BPフリーゼロオーダー最適化(ZO)への移行を提案する。
従来のZO-SGD法とは異なり、我々の研究はより広い範囲のZO最適化手法に探索を広げる。
本研究は,タスクアライメントの重要性,前方勾配法の役割,アルゴリズムの複雑さと微調整性能のバランスについて,これまで見過ごされてきた最適化原理を明らかにした。
論文 参考訳(メタデータ) (2024-02-18T14:08:48Z) - BiLLM: Pushing the Limit of Post-Training Quantization for LLMs [53.31402059062365]
BiLLMは、事前訓練された大規模言語モデルに適した1ビット後のトレーニング後の量子化スキームである。
LLaMA2-70Bの8.41パープレキシティは、様々なLLMファミリーで1.08ビットの重みしか持たない。
論文 参考訳(メタデータ) (2024-02-06T09:26:34Z) - Extreme Compression of Large Language Models via Additive Quantization [59.3122859349777]
我々のアルゴリズムは、AQLMと呼ばれ、情報検索のための古典的な加算量子化(AQ)アプローチを一般化する。
トークン生成のためのAQLMの高速GPUおよびCPU実装を提供しており、最適化されたFP16実装を高速にマッチングまたは性能良くすることができる。
論文 参考訳(メタデータ) (2024-01-11T18:54:44Z) - Modality Plug-and-Play: Elastic Modality Adaptation in Multimodal LLMs
for Embodied AI [10.82017289243097]
LLM(Large Language Models)は、事前訓練されたエンコーダを通じて様々な入力データモダリティを推論することができる。
m-LLMは、既存の最良のスキームと比較してタスクの精度を最大4%改善する。
論文 参考訳(メタデータ) (2023-12-13T04:08:59Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
本稿では, ファインチューニング LLM のこれらの課題について論じ, 本パッケージ FS-LLM を主な貢献として紹介する。
我々は、FLシナリオにおける将来の拡張のために、包括的フェデレーションパラメータ効率の良い微調整アルゴリズムの実装と汎用プログラミングインタフェースを提供する。
本研究では, FS-LLM の有効性を検証し, FL 設定におけるパラメータ効率の高いパラメータ調整アルゴリズムを用いて, 高度な LLM のベンチマークを行う。
論文 参考訳(メタデータ) (2023-09-01T09:40:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。