Optimal Quantum Overlapping Tomography
- URL: http://arxiv.org/abs/2410.13473v1
- Date: Thu, 17 Oct 2024 12:03:43 GMT
- Title: Optimal Quantum Overlapping Tomography
- Authors: Chao Wei, Tao Xin,
- Abstract summary: Partial tomography has emerged as a promising approach for characterizing complex quantum systems.
We introduce a unified framework for optimal overlapping tomography by mapping the problem to clique cover model.
We experimentally validate the feasibility of our schemes on practical nuclear spin processor.
- Score: 2.555222031881788
- License:
- Abstract: Partial tomography, which focuses on reconstructing reduced density matrices (RDMs), has emerged as a promising approach for characterizing complex quantum systems, particularly when full state tomography is impractical. Recently, overlapping tomography has been proposed as an efficient method for determining all $k$-qubit RDMs using logarithmic polynomial measurements, though it has not yet reached the ultimate limit. Here, we introduce a unified framework for optimal quantum overlapping tomography by mapping the problem to the clique cover model. This framework provides the most efficient and experimentally feasible measurement schemes to date, significantly reducing the measurement costs. Our approach is also applicable to determining RDMs with different topological structures. Moreover, we experimentally validate the feasibility of our schemes on practical nuclear spin processor using average measurements and further apply our method to noisy data from a superconducting quantum processor employing projection measurements. The results highlight the strong power of overlapping tomography, paving the way for advanced quantum system characterization and state property learning in the future.
Related papers
- Optimal overlapping tomography [0.814548016007804]
Overlapping tomography is a scheme which allows to obtain all the information contained in specific subsystems of quantum systems.
We present protocols for optimal overlapping tomography with respect to different figures of merit.
Results will find applications in learning noise and interaction patterns in quantum computers as well as characterising fermionic systems in quantum chemistry.
arXiv Detail & Related papers (2024-08-11T08:59:08Z) - Fast Quantum Process Tomography via Riemannian Gradient Descent [3.1406146587437904]
Constrained optimization plays a crucial role in the fields of quantum physics and quantum information science.
One specific issue is that of quantum process tomography, in which the goal is to retrieve the underlying quantum process based on a given set of measurement data.
arXiv Detail & Related papers (2024-04-29T16:28:14Z) - Optimal Quantum State Tomography via Weak Value [0.0]
For an arbitrary d-dimensional quantum system, the optimal strengths being used in measuring the real and imaginary parts of the density matrix are obtained.
The optimal efficiency of the state tomography has also been studied by using mean square error.
arXiv Detail & Related papers (2024-02-18T07:20:34Z) - Multi-qubit State Tomography with Few Pauli Measurements [8.611891055029076]
A characterization tool, Quantum state tomography, reconstructs the density matrix of an unknown quantum state.
This is less practical owing to the huge burden of measurements and data processing for large numbers of qubits.
We build an efficient framework that requires fewer measurements but yields an expected accuracy.
arXiv Detail & Related papers (2023-05-31T14:10:26Z) - Retrieving space-dependent polarization transformations via near-optimal
quantum process tomography [55.41644538483948]
We investigate the application of genetic and machine learning approaches to tomographic problems.
We find that the neural network-based scheme provides a significant speed-up, that may be critical in applications requiring a characterization in real-time.
We expect these results to lay the groundwork for the optimization of tomographic approaches in more general quantum processes.
arXiv Detail & Related papers (2022-10-27T11:37:14Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements.
Our analysis paves the way to a more thorough understanding of the capabilities and limitations of both QELMs and QRCs.
arXiv Detail & Related papers (2022-10-03T09:32:28Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Quantum state tomography with tensor train cross approximation [84.59270977313619]
We show that full quantum state tomography can be performed for such a state with a minimal number of measurement settings.
Our method requires exponentially fewer state copies than the best known tomography method for unstructured states and local measurements.
arXiv Detail & Related papers (2022-07-13T17:56:28Z) - Quantum verification and estimation with few copies [63.669642197519934]
The verification and estimation of large entangled systems represents one of the main challenges in the employment of such systems for reliable quantum information processing.
This review article presents novel techniques focusing on a fixed number of resources (sampling complexity) and thus prove suitable for systems of arbitrary dimension.
Specifically, a probabilistic framework requiring at best only a single copy for entanglement detection is reviewed, together with the concept of selective quantum state tomography.
arXiv Detail & Related papers (2021-09-08T18:20:07Z) - Fast and robust quantum state tomography from few basis measurements [65.36803384844723]
We present an online tomography algorithm designed to optimize all the aforementioned resources at the cost of a worse dependence on accuracy.
The protocol is the first to give provably optimal performance in terms of rank and dimension for state copies, measurement settings and memory.
Further improvements are possible by executing the algorithm on a quantum computer, giving a quantum speedup for quantum state tomography.
arXiv Detail & Related papers (2020-09-17T11:28:41Z) - Semi-device-dependent blind quantum tomography [1.3075880857448061]
Current schemes typically require measurement devices for tomography that are a priori calibrated to high precision.
We show that exploiting the natural low-rank structure of quantum states of interest suffices to arrive at a highly scalable blind' tomography scheme.
We numerically demonstrate that robust blind quantum tomography is possible in a practical setting inspired by an implementation of trapped ions.
arXiv Detail & Related papers (2020-06-04T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.