An Error Mitigated Non-Orthogonal Quantum Eigensolver via Shadow Tomography
- URL: http://arxiv.org/abs/2504.16008v2
- Date: Wed, 23 Apr 2025 16:39:28 GMT
- Title: An Error Mitigated Non-Orthogonal Quantum Eigensolver via Shadow Tomography
- Authors: Hang Ren, Yipei Zhang, Wendy M. Billings, Rebecca Tomann, Nikolay V. Tkachenko, Martin Head-Gordon, K. Birgitta Whaley,
- Abstract summary: We present a shadow-tomography-enhanced Non-Orthogonal Quantum Eigensolver (NOQE) for structure calculations on quantum devices.<n>The measurement cost scales linearly rather than quadratically with the number of reference states, while also reducing the required qubits and circuit depth by half.
- Score: 1.5286618155612892
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a shadow-tomography-enhanced Non-Orthogonal Quantum Eigensolver (NOQE) for more efficient and accurate electronic structure calculations on near-term quantum devices. By integrating shadow tomography into the NOQE, the measurement cost scales linearly rather than quadratically with the number of reference states, while also reducing the required qubits and circuit depth by half. This approach enables extraction of all matrix elements via randomized measurements and classical postprocessing. We analyze its sample complexity and show that, for small systems, it remains constant in the high-precision regime, while for larger systems, it scales linearly with the system size. We further apply shadow-based error mitigation to suppress noise-induced bias without increasing quantum resources. Demonstrations on the hydrogen molecule in the strongly correlated regime achieve chemical accuracy under realistic noise, showing that our method is both resource-efficient and noise-resilient for practical quantum chemistry simulations in the near term.
Related papers
- Quantum extreme learning machines for photonic entanglement witnessing [30.432877421232842]
Quantum extreme learning machines (QELMs) embody a powerful alternative for witnessing quantum entanglement.
We implement a photonic QELM that leverages the orbital angular momentum of photon pairs as an ancillary degree of freedom.
Unlike conventional methods, our approach does not require fine-tuning, precise calibration, or refined knowledge of the apparatus.
arXiv Detail & Related papers (2025-02-25T16:55:35Z) - Digitized counterdiabatic quantum critical dynamics [32.73124984242397]
We experimentally demonstrate that a digitized counterdiabatic quantum protocol reduces the number of topological defects created during a fast quench.<n>We utilize superconducting cloud-based quantum processors with up to 156 qubits.
arXiv Detail & Related papers (2025-02-20T23:43:04Z) - Noise-Mitigated Variational Quantum Eigensolver with Pre-training and Zero-Noise Extrapolation [3.205475178870021]
We develop an efficient noise-mitigating variational quantum eigensolver for accurate computation of molecular ground state energies in noisy environments.<n>We employ zero-noise extrapolation to mitigate quantum noise and combine it with neural networks to improve the accuracy of the noise-fitting function.<n>Results show that our algorithm can constrain noise errors within the range of $mathcalO(10-2) sim mathcalO(10-1)$, outperforming mainstream variational quantum eigensolvers.
arXiv Detail & Related papers (2025-01-03T05:34:36Z) - Lindblad-like quantum tomography for non-Markovian quantum dynamical maps [46.350147604946095]
We introduce Lindblad-like quantum tomography (L$ell$QT) as a quantum characterization technique of time-correlated noise in quantum information processors.
We discuss L$ell$QT for the dephasing dynamics of single qubits in detail, which allows for a neat understanding of the importance of including multiple snapshots of the quantum evolution in the likelihood function.
arXiv Detail & Related papers (2024-03-28T19:29:12Z) - Locally purified density operators for noisy quantum circuits [17.38734393793605]
We map an LPDO of $N$ qubits to a pure state of size $2times N$ defined on a ladder and introduce a unified method for managing virtual and Kraus bonds.<n>We simulate numerically noisy random quantum circuits with depths up to $d=40$ using fidelity and entanglement entropy as accuracy measures.
arXiv Detail & Related papers (2023-12-05T16:10:30Z) - Error-mitigated fermionic classical shadows on noisy quantum devices [0.3775283002059579]
Classical shadow (CS) algorithms offer a solution by reducing the number of quantum state copies needed.
We propose an error-mitigated CS algorithm assuming gate-independent, time-stationary, and Markovian (GTM) noise.
Our algorithm efficiently estimates $k$-RDMs with $widetildemathcal O(knk)$ state copies and $widetildemathcal O(sqrtn)$ calibration measurements for GTM noise.
arXiv Detail & Related papers (2023-10-19T13:27:19Z) - Quantum benefit of the quantum equation of motion for the strongly
coupled many-body problem [0.0]
The quantum equation of motion (qEOM) is a hybrid quantum-classical algorithm for computing excitation properties of a fermionic many-body system.
We demonstrate explicitly that the qEOM exhibits a quantum benefit due to the independence of the number of required quantum measurements.
arXiv Detail & Related papers (2023-09-18T22:10:26Z) - Simulating Neutral Atom Quantum Systems with Tensor Network States [0.0]
We show that circuits with a large number of qubits fail more often under noise that depletes the qubit population.
We also find that the optimized parameters are especially robust to noise, suggesting that a noisier quantum system can be used to find the optimal parameters.
arXiv Detail & Related papers (2023-09-15T17:38:37Z) - Algorithmic Shadow Spectroscopy [0.0]
We present a simulator-agnostic quantum algorithm for estimating energy gaps using very few circuit repetitions (shots) and no extra resources (ancilla qubits)
We demonstrate that our method is intuitively easy to use in practice, robust against gate noise, to a new type of algorithmic error mitigation technique, and uses orders of magnitude fewer number of shots than typical near-term quantum algorithms -- as low as 10 shots per timestep is sufficient.
arXiv Detail & Related papers (2022-12-21T14:23:48Z) - Matrix product channel: Variationally optimized quantum tensor network
to mitigate noise and reduce errors for the variational quantum eigensolver [0.0]
We develop a method to exploit the quantum-classical interface provided by informationally complete measurements.
We argue that a hybrid strategy of using the quantum hardware together with the classical software outperforms a purely classical strategy.
The algorithm can be applied as the final postprocessing step in the quantum hardware simulation of protein-ligand complexes in the context of drug design.
arXiv Detail & Related papers (2022-12-20T13:03:48Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Semi-device-dependent blind quantum tomography [1.3075880857448061]
Current schemes typically require measurement devices for tomography that are a priori calibrated to high precision.
We show that exploiting the natural low-rank structure of quantum states of interest suffices to arrive at a highly scalable blind' tomography scheme.
We numerically demonstrate that robust blind quantum tomography is possible in a practical setting inspired by an implementation of trapped ions.
arXiv Detail & Related papers (2020-06-04T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.