論文の概要: Prototype-Based Image Prompting for Weakly Supervised Histopathological Image Segmentation
- arxiv url: http://arxiv.org/abs/2503.12068v1
- Date: Sat, 15 Mar 2025 09:55:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:31:31.143041
- Title: Prototype-Based Image Prompting for Weakly Supervised Histopathological Image Segmentation
- Title(参考訳): 病理組織学的画像分割のためのプロトタイプベース画像プロンプト
- Authors: Qingchen Tang, Lei Fan, Maurice Pagnucco, Yang Song,
- Abstract要約: 画素レベルのアノテーションのコストが高いため,画像レベルのラベル付き画像セグメント化の弱さが注目されている。
クラスアクティベーションマップ(CAM)を用いた伝統的な手法は、しばしば最も差別的な領域のみをハイライトする。
- 参考スコア(独自算出の注目度): 13.640757848445835
- License:
- Abstract: Weakly supervised image segmentation with image-level labels has drawn attention due to the high cost of pixel-level annotations. Traditional methods using Class Activation Maps (CAMs) often highlight only the most discriminative regions, leading to incomplete masks. Recent approaches that introduce textual information struggle with histopathological images due to inter-class homogeneity and intra-class heterogeneity. In this paper, we propose a prototype-based image prompting framework for histopathological image segmentation. It constructs an image bank from the training set using clustering, extracting multiple prototype features per class to capture intra-class heterogeneity. By designing a matching loss between input features and class-specific prototypes using contrastive learning, our method addresses inter-class homogeneity and guides the model to generate more accurate CAMs. Experiments on four datasets (LUAD-HistoSeg, BCSS-WSSS, GCSS, and BCSS) show that our method outperforms existing weakly supervised segmentation approaches, setting new benchmarks in histopathological image segmentation.
- Abstract(参考訳): 画素レベルのアノテーションのコストが高いため,画像レベルのラベル付き画像セグメント化の弱さが注目されている。
クラスアクティベーションマップ(CAM)を用いた伝統的な手法は、しばしば最も差別的な領域のみをハイライトし、不完全なマスクへと繋がる。
テキスト情報を導入した最近のアプローチは、クラス間均一性とクラス内異質性に起因する病理像に苦慮している。
本稿では,病理組織学的画像分割のためのプロトタイプベースの画像プロンプトフレームワークを提案する。
クラスタリングを使用してトレーニングセットからイメージバンクを構築し、クラス毎に複数のプロトタイプ機能を抽出して、クラス内の不均一性をキャプチャする。
コントラスト学習を用いて,入力特徴とクラス固有のプロトタイプの一致損失を設計することにより,クラス間の均一性に対処し,より正確なCAMを生成する。
4つのデータセット (LUAD-HistoSeg, BCSS-WSSS, GCSS, BCSS) を実験したところ, 本手法は既存の弱教師付きセグメンテーション手法よりも優れており, 新たなベンチマークを組織像セグメンテーションに設定できることがわかった。
関連論文リスト
- Freestyle Sketch-in-the-Loop Image Segmentation [116.1810651297801]
そこで我々は,視覚概念を部分的に,完全に,あるいはグループ化することで,視覚概念のセグメンテーションを可能にする,スケッチ・イン・ザ・ループ(sketch-in-the-loop)イメージセグメンテーションフレームワークを提案する。
このフレームワークは、スケッチベースの画像検索モデルと大規模事前学習モデルとの相乗効果を生かしている。
我々の目的による拡張戦略は、スケッチ誘導マスク生成の汎用性を高め、複数のレベルでセグメンテーションを可能にする。
論文 参考訳(メタデータ) (2025-01-27T13:07:51Z) - Discriminative Image Generation with Diffusion Models for Zero-Shot Learning [53.44301001173801]
ゼロショット学習のための新たな識別画像生成フレームワークであるDIG-ZSLを提案する。
我々は、事前学習されたカテゴリー識別モデル(CDM)の指導のもと、各未確認クラスの識別クラストークン(DCT)を学習する。
本稿では,4つのデータセットに対する広範な実験と可視化を行い,(1)多彩で高品質な画像を生成すること,(2)最先端の非人間アノテーション型セマンティックプロトタイプ手法を大きなマージンで上回ること,(3)人間アノテーションを利用したベースラインよりも同等あるいは優れた性能を実現すること,の4つが示される。
論文 参考訳(メタデータ) (2024-12-23T02:18:54Z) - Co-Segmentation without any Pixel-level Supervision with Application to Large-Scale Sketch Classification [3.3104978705632777]
画像の集合における共通物体の画素レベルの局所化という,オブジェクトの分離のための新しい手法を提案する。
この方法は、同じレベルの監督で訓練された方法のうち、最先端のパフォーマンスを達成する。
大規模スケッチ認識の課題において,提案手法の利点をさらに示す。
論文 参考訳(メタデータ) (2024-10-17T14:16:45Z) - Human-machine Interactive Tissue Prototype Learning for Label-efficient
Histopathology Image Segmentation [18.755759024796216]
ディープ・ニューラル・ネットワークは、画像セグメンテーションを大幅に進歩させたが、通常は豊富なデータを必要とする。
本稿では,ラベル効率のよい組織原型辞書構築パイプラインを提案し,得られた原型を用いて病理組織像のセグメンテーションを導くことを提案する。
人間の機械的対話型組織プロトタイプ学習法は,完全教師付きベースラインと同等のセグメンテーション性能が得られることを示す。
論文 参考訳(メタデータ) (2022-11-26T06:17:21Z) - Self-supervised Image-specific Prototype Exploration for Weakly
Supervised Semantic Segmentation [72.33139350241044]
画像レベルのラベルをベースとしたWSSS(Weakly Supervised Semantic COCO)は,アノテーションコストの低さから注目されている。
本稿では,画像特異的なプロトタイプ探索 (IPE) と汎用一貫性 (GSC) の喪失からなる画像固有プロトタイプ探索 (SIPE) を提案する。
SIPEは,画像レベルラベルのみを用いて,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-03-06T09:01:03Z) - Learning Contrastive Representation for Semantic Correspondence [150.29135856909477]
セマンティックマッチングのためのマルチレベルコントラスト学習手法を提案する。
画像レベルのコントラスト学習は、畳み込み特徴が類似したオブジェクト間の対応を見出すための鍵となる要素であることを示す。
論文 参考訳(メタデータ) (2021-09-22T18:34:14Z) - Contrastive Semi-Supervised Learning for 2D Medical Image Segmentation [16.517086214275654]
フルイメージではなく,画像パッチにContrastive Learning(CL)を適用した,新しい半教師付き2次元医療セグメンテーションソリューションを提案する。
これらのパッチは、擬似ラベリングによって得られた異なるクラスの意味情報を用いて有意義に構築される。
また,コントラスト学習と相乗効果を持つ新しい整合正規化手法を提案する。
論文 参考訳(メタデータ) (2021-06-12T15:43:24Z) - Semantically Meaningful Class Prototype Learning for One-Shot Image
Semantic Segmentation [58.96902899546075]
ワンショットセマンティックイメージセグメンテーションは、1つの注釈付きイメージで新しいクラスのオブジェクト領域を分割することを目的としている。
最近の研究では、テスト時に予想される状況を模倣するために、エピソディクストレーニング戦略を採用している。
エピソードトレーニングにおいて,マルチクラスラベル情報を活用することを提案する。
ネットワークが各カテゴリに対してより意味のある機能を生成するように促すだろう。
論文 参考訳(メタデータ) (2021-02-22T12:07:35Z) - Deep Active Learning for Joint Classification & Segmentation with Weak
Annotator [22.271760669551817]
クラスアクティベーションマップ(CAM)のようなCNNの可視化と解釈手法は、一般的に、クラス予測に関連する画像領域を強調するために使用される。
本稿では,画素レベルのアノテーションを段階的に統合する能動的学習フレームワークを提案する。
提案手法は, ランダムなサンプル選択を用いることで, 最先端のCAMやAL手法よりも優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2020-10-10T03:25:54Z) - Attention Model Enhanced Network for Classification of Breast Cancer
Image [54.83246945407568]
AMENはマルチブランチ方式で、画素ワイドアテンションモデルとサブモジュールの分類で定式化される。
微妙な詳細情報に焦点を合わせるため、サンプル画像は、前枝から生成された画素対応の注目マップによって強化される。
3つのベンチマークデータセットで行った実験は、様々なシナリオにおいて提案手法の優位性を実証している。
論文 参考訳(メタデータ) (2020-10-07T08:44:21Z) - Zero-Shot Recognition through Image-Guided Semantic Classification [9.291055558504588]
ゼロショット学習(ZSL)のための新しい埋め込み型フレームワークを提案する。
複数ラベル分類のための2値関係法により,画像と意味分類器のマッピングを逆学習する手法を提案する。
IGSCは概念的には単純であり、分類のための既存のディープアーキテクチャをわずかに拡張することで実現可能である。
論文 参考訳(メタデータ) (2020-07-23T06:22:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。