Photon Entangled States and Atomic Correlations in Superradiance from Multilevel Atoms
- URL: http://arxiv.org/abs/2410.13655v1
- Date: Thu, 17 Oct 2024 15:19:54 GMT
- Title: Photon Entangled States and Atomic Correlations in Superradiance from Multilevel Atoms
- Authors: Amir Sivan, Meir Orenstein,
- Abstract summary: We show that the photonic states emitted by the multilevel atoms superradiance process exhibit entanglement in the modal degree of freedom.
A mode-independent entangled photon source is also demonstrated and discussed.
- Score: 0.0
- License:
- Abstract: We analyze here the collective emission dynamics from ensembles of multilevel atoms. We show that the photonic states emitted by the multilevel atoms superradiance process exhibit entanglement in the modal (frequency) degree of freedom, making ensembles of such atoms candidates for fast and deterministic sources of entangled photons. The photonic entanglement is controlled by modifying the excitation of the atomic ensemble. This entanglement is driven by two mechanisms: (i) excitation of the atomic ensemble to a superimposed (combination) state and (ii) degeneracies of the transitions due to internal structure of the emitting atoms, resulting in intricate non-radiative virtual transitions in the ensemble, which create interatomic correlations that are imprinted onto the emitted photons. In addition, we dwell on the correlations of the superradiating atomic ensembles and their dynamics, and demonstrate a case where inter-atomic correlations exhibit beating in steady-state due to the aforementioned virtual transitions. A mode-independent entangled photon source is also demonstrated and discussed.
Related papers
- Collective coupling of driven multilevel atoms and its effect on four-wave mixing [0.0]
We present a systematic analysis of the cooperative effects arising in driven systems composed of multilevel atoms coupled via a common electromagnetic environment.
The dependence of single and two-photon correlations are studied in detail for each region by varying atomic orientations.
It is found that the anisotropy of the dipole-dipole interaction and its wave nature are essential to understand the behavior of the photons correlations.
arXiv Detail & Related papers (2024-04-04T17:36:24Z) - Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - The Adiabatic Wigner-Weisskopf Model [0.0]
We consider a slowly varying time dependent d-level atom interacting with a photon field.
We analyze the dynamics of the atom and of the radiation field in the adiabatic and small coupling approximations.
arXiv Detail & Related papers (2022-10-27T19:10:01Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Collective photon emission patterns from two atoms in free space [26.98676199482944]
Modification of spontaneous decay in space and time is a central topic of quantum physics.
We study the resulting collective spontaneous emission patterns in entangled Dicke states.
Our results demonstrate that the detection of a single photon can profoundly modify the collective emission of an atomic array.
arXiv Detail & Related papers (2022-02-28T10:53:39Z) - Qubit-photon bound states in topological waveguides with long-range
hoppings [62.997667081978825]
Quantum emitters interacting with photonic band-gap materials lead to the appearance of qubit-photon bound states.
We study the features of the qubit-photon bound states when the emitters couple to the bulk modes in the different phases.
We consider the coupling of emitters to the edge modes appearing in the different topological phases.
arXiv Detail & Related papers (2021-05-26T10:57:21Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z) - Collective emission of photons from dense, dipole-dipole interacting
atomic ensembles [0.0]
We study the collective radiation properties of cold, trapped ensembles of atoms.
We find that the emission rate of a photon from an excited atomic ensemble is strongly enhanced for an elongated cloud.
arXiv Detail & Related papers (2020-09-18T06:44:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.