論文の概要: DPFedBank: Crafting a Privacy-Preserving Federated Learning Framework for Financial Institutions with Policy Pillars
- arxiv url: http://arxiv.org/abs/2410.13753v1
- Date: Thu, 17 Oct 2024 16:51:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:21:01.421337
- Title: DPFedBank: Crafting a Privacy-Preserving Federated Learning Framework for Financial Institutions with Policy Pillars
- Title(参考訳): DPFedBank: ポリシーピラーによる金融機関のためのプライバシ保護フェデレーション学習フレームワークの構築
- Authors: Peilin He, Chenkai Lin, Isabella Montoya,
- Abstract要約: 本稿では、金融機関が協調して機械学習モデルを開発できるようにする革新的なフレームワークDPFedBankについて述べる。
DPFedBankは、金融データに関連するユニークなプライバシとセキュリティ上の課題に対処するために設計されている。
- 参考スコア(独自算出の注目度): 0.09363323206192666
- License:
- Abstract: In recent years, the financial sector has faced growing pressure to adopt advanced machine learning models to derive valuable insights while preserving data privacy. However, the highly sensitive nature of financial data presents significant challenges to sharing and collaboration. This paper presents DPFedBank, an innovative framework enabling financial institutions to collaboratively develop machine learning models while ensuring robust data privacy through Local Differential Privacy (LDP) mechanisms. DPFedBank is designed to address the unique privacy and security challenges associated with financial data, allowing institutions to share insights without exposing sensitive information. By leveraging LDP, the framework ensures that data remains confidential even during collaborative processes, providing a crucial solution for privacy-aware machine learning in finance. We conducted an in-depth evaluation of the potential vulnerabilities within this framework and developed a comprehensive set of policies aimed at mitigating these risks. The proposed policies effectively address threats posed by malicious clients, compromised servers, inherent weaknesses in existing Differential Privacy-Federated Learning (DP-FL) frameworks, and sophisticated external adversaries. Unlike existing DP-FL approaches, DPFedBank introduces a novel combination of adaptive LDP mechanisms and advanced cryptographic techniques specifically tailored for financial data, which significantly enhances privacy while maintaining model utility. Key security enhancements include the implementation of advanced authentication protocols, encryption techniques for secure data exchange, and continuous monitoring systems to detect and respond to malicious activities in real-time.
- Abstract(参考訳): 近年、金融セクターは、データプライバシを保ちながら価値ある洞察を導き出すために、高度な機械学習モデルを採用する圧力の高まりに直面している。
しかし、金融データの非常に敏感な性質は、共有とコラボレーションに大きな課題をもたらしている。
本稿では,ローカル微分プライバシ(LDP)機構を通じて堅牢なデータプライバシを確保しつつ,金融機関が協調して機械学習モデルを開発できるようにする,革新的なフレームワークDPFedBankを提案する。
DPFedBankは、金融データに関連するユニークなプライバシとセキュリティ上の課題に対処するために設計されている。
LDPを活用することで、このフレームワークは、協力プロセスの間もデータが機密保持されることを保証し、金融におけるプライバシに配慮した機械学習の重要なソリューションを提供する。
このフレームワークの潜在的な脆弱性の詳細な評価を行い、これらのリスクを軽減するための包括的なポリシーセットを開発しました。
提案されたポリシーは、悪意のあるクライアントによる脅威、妥協されたサーバ、既存の差別化プライバシ・フェデレート・ラーニング(DP-FL)フレームワーク固有の弱点、洗練された外部敵による脅威に効果的に対処する。
既存のDP-FLアプローチとは異なり、DPFedBankは、適応LDPメカニズムと金融データに特化した高度な暗号技術を組み合わせた新しい組み合わせを導入し、モデルユーティリティを維持しながらプライバシーを大幅に向上させた。
鍵となるセキュリティ強化には、高度な認証プロトコルの実装、セキュアなデータ交換のための暗号化技術、悪意のあるアクティビティをリアルタイムで検出および応答する継続的監視システムなどが含まれる。
関連論文リスト
- FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
フェデレーション・インストラクション・チューニング(FedIT)は、複数のデータ所有者間で協調的なトレーニングを統合することで、有望なソリューションである。
FedITは、インストラクショナルデータの不足や、トレーニングデータ抽出攻撃への露出リスクなどの制限に直面している。
本稿では,FewFedPITを提案する。このFewFedPITは,フェデレートされた数ショット学習のプライバシー保護とモデル性能を同時に向上する。
論文 参考訳(メタデータ) (2024-03-10T08:41:22Z) - State-of-the-Art Approaches to Enhancing Privacy Preservation of Machine Learning Datasets: A Survey [0.0]
本稿では、機械学習(ML)の進化する展望と、その様々な分野における大きな影響について考察する。
プライバシ保護機械学習(PPML)の新たな分野に焦点を当てている。
MLアプリケーションは、通信、金融技術、監視といった産業にとってますます不可欠なものになりつつあるため、プライバシー上の懸念が高まる。
論文 参考訳(メタデータ) (2024-02-25T17:31:06Z) - Locally Differentially Private Embedding Models in Distributed Fraud
Prevention Systems [2.001149416674759]
プライバシの観点から設計され,最近のPETs Prize Challengesで授与された不正防止のための協調的なディープラーニングフレームワークを提案する。
各種トランザクションシーケンスの潜時埋め込み表現とローカル差分プライバシを利用して、外部にホストされた不正や異常検出モデルを安全に通知するデータリリース機構を構築する。
我々は,大規模決済ネットワークが寄贈した2つの分散データセットへのコントリビューションを評価し,他のアプリケーションドメインでの公開作業に類似したユーティリティ・プライバシ・トレードオフとともに,一般的な推論時攻撃に対するロバスト性を示す。
論文 参考訳(メタデータ) (2024-01-03T14:04:18Z) - Security and Privacy Issues of Federated Learning [0.0]
フェデレートラーニング(FL)は、データのプライバシと機密性に対処するための有望なアプローチとして登場した。
本稿では,各種機械学習モデルを対象としたフェデレートラーニング(FL)におけるセキュリティとプライバシの包括的分類について述べる。
論文 参考訳(メタデータ) (2023-07-22T22:51:07Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
サーバが複数のユーザの協調的なデータ分析を,プライバシの懸念と限られた通信能力で調整する,フェデレートされたデータ分析問題を考える。
有限出力空間を有する離散値機構の局所的差分プライバシー保証を$f$-differential privacy (DP) レンズを用いて検討する。
より具体的には、様々な離散的評価機構の厳密な$f$-DP保証を導出することにより、既存の文献を前進させる。
論文 参考訳(メタデータ) (2023-02-19T16:58:53Z) - A Privacy-Preserving Hybrid Federated Learning Framework for Financial
Crime Detection [27.284477227066972]
本稿では,金融犯罪検知のためのセキュアでプライバシーに配慮した学習と推論を提供するハイブリッド・フェデレーション学習システムを提案する。
提案するフレームワークの検知性能とプライバシ保護能力を評価するために,広範な実証的研究を行った。
論文 参考訳(メタデータ) (2023-02-07T18:12:48Z) - Privacy-Preserving Joint Edge Association and Power Optimization for the
Internet of Vehicles via Federated Multi-Agent Reinforcement Learning [74.53077322713548]
プライバシ保護型共同エッジアソシエーションと電力配分問題について検討する。
提案されたソリューションは、最先端のソリューションよりも高いプライバシレベルを維持しながら、魅力的なトレードオフにぶつかる。
論文 参考訳(メタデータ) (2023-01-26T10:09:23Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
フェデレートラーニング(FL)により、データ所有者はデータを共有することなく、データガバナンスを維持し、モデルトレーニングをローカルで行うことができる。
FLと関連する技術は、しばしばプライバシー保護と表現される。
この用語が適切でない理由を説明し、プライバシの形式的定義を念頭に設計されていないプロトコルに対する過度な信頼に関連するリスクを概説する。
論文 参考訳(メタデータ) (2021-12-21T08:44:05Z) - Privacy Preservation in Federated Learning: An insightful survey from
the GDPR Perspective [10.901568085406753]
この記事は、フェデレーテッドラーニングに使用できる最先端のプライバシー技術に関する調査に特化している。
近年の研究では、FLにおけるデータの保持と計算は、プライバシ保証者にとって不十分であることが示されている。
これは、FLシステム内のパーティ間で交換されるMLモデルパラメータが、いくつかのプライバシ攻撃で悪用されるためである。
論文 参考訳(メタデータ) (2020-11-10T21:41:25Z) - Trustworthy AI [75.99046162669997]
入力データの小さな敵対的変化への脆さ、決定の説明能力、トレーニングデータのバイアスに対処する能力は、最も顕著な制限である。
我々は,AIシステムに対するユーザおよび公的な信頼を高める上での6つの重要な問題に対処するために,信頼に値するAIに関するチュートリアルを提案する。
論文 参考訳(メタデータ) (2020-11-02T20:04:18Z) - PCAL: A Privacy-preserving Intelligent Credit Risk Modeling Framework
Based on Adversarial Learning [111.19576084222345]
本稿では,PCAL(Adversarial Learning)に基づくプライバシ保護型信用リスクモデリングの枠組みを提案する。
PCALは、ターゲット予測タスクのパフォーマンスの重要なユーティリティ情報を維持しながら、元のデータセット内のプライベート情報を隠蔽することを目的としている。
結果は,PCALがユーザデータから効果的なプライバシフリー表現を学習し,信用リスク分析のためのプライバシ保存機械学習の基盤となることを示唆している。
論文 参考訳(メタデータ) (2020-10-06T07:04:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。