Is Prior-Free Black-Box Non-Stationary Reinforcement Learning Feasible?
- URL: http://arxiv.org/abs/2410.13772v2
- Date: Mon, 21 Oct 2024 01:05:19 GMT
- Title: Is Prior-Free Black-Box Non-Stationary Reinforcement Learning Feasible?
- Authors: Argyrios Gerogiannis, Yu-Han Huang, Venugopal V. Veeravalli,
- Abstract summary: We study the problem of Non-Stationary Reinforcement Learning (NS-RL) without prior knowledge about the system's non-stationarity.
A state-of-the-art, black-box algorithm, known as MASTER, is considered, with a focus on identifying the conditions under which it can achieve its stated goals.
- Score: 17.220126722355626
- License:
- Abstract: We study the problem of Non-Stationary Reinforcement Learning (NS-RL) without prior knowledge about the system's non-stationarity. A state-of-the-art, black-box algorithm, known as MASTER, is considered, with a focus on identifying the conditions under which it can achieve its stated goals. Specifically, we prove that MASTER's non-stationarity detection mechanism is not triggered for practical choices of horizon, leading to performance akin to a random restarting algorithm. Moreover, we show that the regret bound for MASTER, while being order optimal, stays above the worst-case linear regret until unreasonably large values of the horizon. To validate these observations, MASTER is tested for the special case of piecewise stationary multi-armed bandits, along with methods that employ random restarting, and others that use quickest change detection to restart. A simple, order optimal random restarting algorithm, that has prior knowledge of the non-stationarity is proposed as a baseline. The behavior of the MASTER algorithm is validated in simulations, and it is shown that methods employing quickest change detection are more robust and consistently outperform MASTER and other random restarting approaches.
Related papers
- Near-Optimal Algorithm for Non-Stationary Kernelized Bandits [6.379833644595456]
We study a non-stationary kernelized bandit (KB) problem, also called time-varying Bayesian optimization.
We show the first algorithm-independent regret lower bound for non-stationary KB with squared exponential and Mat'ern kernels.
We propose a novel near-optimal algorithm called restarting phased elimination with random permutation.
arXiv Detail & Related papers (2024-10-21T14:28:26Z) - Time-Varying Gaussian Process Bandits with Unknown Prior [18.93478528448966]
PE-GP-UCB is capable of solving time-varying Bayesian optimisation problems.
It relies on the fact that either the observed function values are consistent with some of the priors.
arXiv Detail & Related papers (2024-02-02T18:52:16Z) - An Optimization-based Algorithm for Non-stationary Kernel Bandits
without Prior Knowledge [23.890686553141798]
We propose an algorithm for non-stationary kernel bandits that does not require prior knowledge of the degree of non-stationarity.
Our algorithm enjoys a tighter dynamic regret bound than previous work on the non-stationary kernel bandit setting.
arXiv Detail & Related papers (2022-05-29T21:32:53Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
In online algorithm selection (OAS), instances of an algorithmic problem class are presented to an agent one after another, and the agent has to quickly select a presumably best algorithm from a fixed set of candidate algorithms.
For decision problems such as satisfiability (SAT), quality typically refers to the algorithm's runtime.
In this work, we revisit multi-armed bandit algorithms for OAS and discuss their capability of dealing with the problem.
We adapt them towards runtime-oriented losses, allowing for partially censored data while keeping a space- and time-complexity independent of the time horizon.
arXiv Detail & Related papers (2021-09-13T18:10:52Z) - Optimal Sequential Detection of Signals with Unknown Appearance and
Disappearance Points in Time [64.26593350748401]
The paper addresses a sequential changepoint detection problem, assuming that the duration of change may be finite and unknown.
We focus on a reliable maximin change detection criterion of maximizing the minimal probability of detection in a given time (or space) window.
The FMA algorithm is applied to detecting faint streaks of satellites in optical images.
arXiv Detail & Related papers (2021-02-02T04:58:57Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Optimal Best-arm Identification in Linear Bandits [79.3239137440876]
We devise a simple algorithm whose sampling complexity matches known instance-specific lower bounds.
Unlike existing best-arm identification strategies, our algorithm uses a stopping rule that does not depend on the number of arms.
arXiv Detail & Related papers (2020-06-29T14:25:51Z) - Excursion Search for Constrained Bayesian Optimization under a Limited
Budget of Failures [62.41541049302712]
We propose a novel decision maker grounded in control theory that controls the amount of risk we allow in the search as a function of a given budget of failures.
Our algorithm uses the failures budget more efficiently in a variety of optimization experiments, and generally achieves lower regret, than state-of-the-art methods.
arXiv Detail & Related papers (2020-05-15T09:54:09Z) - Corruption-Tolerant Gaussian Process Bandit Optimization [130.60115798580136]
We consider the problem of optimizing an unknown (typically non-producing) function with a bounded norm.
We introduce an algorithm based on Fast-Slow GP-UCB based on "fast but non-robust" and "slow"
We argue that certain dependencies cannot be required depending on the corruption level.
arXiv Detail & Related papers (2020-03-04T09:46:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.