Analyzing Deep Transformer Models for Time Series Forecasting via Manifold Learning
- URL: http://arxiv.org/abs/2410.13792v1
- Date: Thu, 17 Oct 2024 17:32:35 GMT
- Title: Analyzing Deep Transformer Models for Time Series Forecasting via Manifold Learning
- Authors: Ilya Kaufman, Omri Azencot,
- Abstract summary: Transformer models have consistently achieved remarkable results in various domains such as natural language processing and computer vision.
Despite ongoing research efforts to better understand these models, the field still lacks a comprehensive understanding.
Time series data, unlike image and text information, can be more challenging to interpret and analyze.
- Score: 4.910937238451485
- License:
- Abstract: Transformer models have consistently achieved remarkable results in various domains such as natural language processing and computer vision. However, despite ongoing research efforts to better understand these models, the field still lacks a comprehensive understanding. This is particularly true for deep time series forecasting methods, where analysis and understanding work is relatively limited. Time series data, unlike image and text information, can be more challenging to interpret and analyze. To address this, we approach the problem from a manifold learning perspective, assuming that the latent representations of time series forecasting models lie next to a low-dimensional manifold. In our study, we focus on analyzing the geometric features of these latent data manifolds, including intrinsic dimension and principal curvatures. Our findings reveal that deep transformer models exhibit similar geometric behavior across layers, and these geometric features are correlated with model performance. Additionally, we observe that untrained models initially have different structures, but they rapidly converge during training. By leveraging our geometric analysis and differentiable tools, we can potentially design new and improved deep forecasting neural networks. This approach complements existing analysis studies and contributes to a better understanding of transformer models in the context of time series forecasting. Code is released at https://github.com/azencot-group/GATLM.
Related papers
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
In pursuit of a deeper understanding of its surprising behaviors, we investigate the utility of a simple yet accurate model of a trained neural network.
Across three case studies, we illustrate how it can be applied to derive new empirical insights on a diverse range of prominent phenomena.
arXiv Detail & Related papers (2024-10-31T22:54:34Z) - Enforcing Interpretability in Time Series Transformers: A Concept Bottleneck Framework [2.8470354623829577]
We develop a framework based on Concept Bottleneck Models to enforce interpretability of time series Transformers.
We modify the training objective to encourage a model to develop representations similar to predefined interpretable concepts.
We find that the model performance remains mostly unaffected, while the model shows much improved interpretability.
arXiv Detail & Related papers (2024-10-08T14:22:40Z) - Exploring Representations and Interventions in Time Series Foundation Models [17.224575072056627]
Time series foundation models (TSFMs) promise to be powerful tools for a wide range of applications.
Their internal representations and learned concepts are still not well understood.
This study investigates the structure and redundancy of representations across various TSFMs.
arXiv Detail & Related papers (2024-09-19T17:11:27Z) - Two Steps Forward and One Behind: Rethinking Time Series Forecasting
with Deep Learning [7.967995669387532]
The Transformer is a highly successful deep learning model that has revolutionised the world of artificial neural networks.
We investigate the effectiveness of Transformer-based models applied to the domain of time series forecasting.
We propose a set of alternative models that are better performing and significantly less complex.
arXiv Detail & Related papers (2023-04-10T12:47:42Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
In modern data science, it is more interesting to understand the properties of the model, which parts could be replaced to obtain better results.
We use multi-objective evolutionary optimization for composite data-driven model learning to obtain the algorithm's desired properties.
arXiv Detail & Related papers (2021-07-07T11:17:09Z) - Understanding the Mechanics of SPIGOT: Surrogate Gradients for Latent
Structure Learning [20.506232306308977]
Latent structure models are a powerful tool for modeling language data.
One challenge with end-to-end training of these models is the argmax operation, which has null gradient.
We explore latent structure learning through the angle of pulling back the downstream learning objective.
arXiv Detail & Related papers (2020-10-05T21:56:00Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z) - Forecasting Sequential Data using Consistent Koopman Autoencoders [52.209416711500005]
A new class of physics-based methods related to Koopman theory has been introduced, offering an alternative for processing nonlinear dynamical systems.
We propose a novel Consistent Koopman Autoencoder model which, unlike the majority of existing work, leverages the forward and backward dynamics.
Key to our approach is a new analysis which explores the interplay between consistent dynamics and their associated Koopman operators.
arXiv Detail & Related papers (2020-03-04T18:24:30Z) - Predicting Multidimensional Data via Tensor Learning [0.0]
We develop a model that retains the intrinsic multidimensional structure of the dataset.
To estimate the model parameters, an Alternating Least Squares algorithm is developed.
The proposed model is able to outperform benchmark models present in the forecasting literature.
arXiv Detail & Related papers (2020-02-11T11:57:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.