論文の概要: Private Counterfactual Retrieval
- arxiv url: http://arxiv.org/abs/2410.13812v1
- Date: Thu, 17 Oct 2024 17:45:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 17:07:37.082078
- Title: Private Counterfactual Retrieval
- Title(参考訳): Private Counterfactal Retrieval
- Authors: Mohamed Nomeir, Pasan Dissanayake, Shreya Meel, Sanghamitra Dutta, Sennur Ulukus,
- Abstract要約: 透明性と説明可能性は、ブラックボックス機械学習モデルを採用する際に考慮すべき極めて重要な2つの側面である。
反実的な説明を提供することは、この要件を満たす一つの方法である。
プライベート情報検索(PIR)技術にインスパイアされた複数のスキームを提案する。
- 参考スコア(独自算出の注目度): 34.11302393278422
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transparency and explainability are two extremely important aspects to be considered when employing black-box machine learning models in high-stake applications. Providing counterfactual explanations is one way of catering this requirement. However, this also poses a threat to the privacy of both the institution that is providing the explanation as well as the user who is requesting it. In this work, we propose multiple schemes inspired by private information retrieval (PIR) techniques which ensure the \emph{user's privacy} when retrieving counterfactual explanations. We present a scheme which retrieves the \emph{exact} nearest neighbor counterfactual explanation from a database of accepted points while achieving perfect (information-theoretic) privacy for the user. While the scheme achieves perfect privacy for the user, some leakage on the database is inevitable which we quantify using a mutual information based metric. Furthermore, we propose strategies to reduce this leakage to achieve an advanced degree of database privacy. We extend these schemes to incorporate user's preference on transforming their attributes, so that a more actionable explanation can be received. Since our schemes rely on finite field arithmetic, we empirically validate our schemes on real datasets to understand the trade-off between the accuracy and the finite field sizes.
- Abstract(参考訳): 透明性と説明可能性は、ブラックボックス機械学習モデルを高精細なアプリケーションに採用する際に考慮すべき、極めて重要な2つの側面である。
反実的な説明を提供することは、この要件を満たす一つの方法である。
しかし、これはまた、説明を提供している機関と、それを要求しているユーザーの両方のプライバシーを脅かしている。
本研究では,個人情報検索(PIR)技術にインスパイアされた複数のスキームを提案する。
本稿では,ユーザにとって完全な(情報-理論的な)プライバシを達成しつつ,受理点のデータベースから近傍のemph{exact} の反実的説明を検索する手法を提案する。
このスキームはユーザにとって完全なプライバシを実現する一方で,相互情報に基づくメトリクスを用いて定量化するために,データベース上のいくつかのリークは避けられない。
さらに,このリークを低減し,高度なデータベースプライバシを実現する戦略を提案する。
これらのスキームを拡張して,属性の変換に対するユーザの好みを取り入れることで,より実用的な説明が受け取れるようにした。
我々のスキームは有限体算術に依存するので、精度と有限体サイズの間のトレードオフを理解するために実データセット上のスキームを実証的に検証する。
関連論文リスト
- What If, But Privately: Private Counterfactual Retrieval [34.11302393278422]
透明性と説明可能性は、ブラックボックス機械学習モデルを高精細なアプリケーションに採用する際に考慮すべき重要な2つの側面である。
反事実的説明を提供することは、この要件を満たす一つの方法であるが、説明を提供する機関のプライバシーと、それを要求している利用者に脅威を与える。
本フレームワークは,利用者の完全かつ情報理論的,プライバシーを達成しつつ,受理点のデータベースから最も近い近隣の偽説明を検索する。
論文 参考訳(メタデータ) (2025-08-05T17:51:01Z) - An Interactive Framework for Implementing Privacy-Preserving Federated Learning: Experiments on Large Language Models [7.539653242367701]
フェデレートラーニング(FL)は、ユーザのデータをローカルデバイスに保存することで、プライバシを高める。
最近の攻撃は、トレーニング中にユーザーが共有したアップデートが、データに関する重要な情報を明らかにすることを実証している。
プライバシ実践者としての人間エンティティを統合し,モデルのプライバシとユーティリティの最適なトレードオフを決定するフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-11T23:07:14Z) - Private Counterfactual Retrieval With Immutable Features [34.11302393278422]
分類タスクにおいて、対実的な説明は、入力が好ましいクラスに分類されるために必要な最小限の変更を提供する。
受理されたサンプルのデータベースから最も近い正解をプライベートに回収する問題を考察する。
プライベート情報検索(PIR)の技術を活用し,その通信コストを特徴付ける2つのI-PCR手法を提案する。
論文 参考訳(メタデータ) (2024-11-15T18:50:53Z) - Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
本稿では,PseudoProbability Unlearning (PPU)を提案する。
提案手法は,最先端の手法に比べて20%以上の誤りを忘れる改善を実現している。
論文 参考訳(メタデータ) (2024-11-04T21:27:06Z) - Ungeneralizable Examples [70.76487163068109]
学習不能なデータを作成するための現在のアプローチには、小さくて特殊なノイズが組み込まれている。
学習不能データの概念を条件付きデータ学習に拡張し、textbfUntextbf Generalizable textbfExamples (UGEs)を導入する。
UGEは認証されたユーザに対して学習性を示しながら、潜在的なハッカーに対する非学習性を維持している。
論文 参考訳(メタデータ) (2024-04-22T09:29:14Z) - Counterfactual Explanations via Locally-guided Sequential Algorithmic
Recourse [13.95253855760017]
提案するLocalFACEは,現実的かつ実用的な対実的説明を構成するモデルに依存しない手法である。
提案手法は, ユーザのプライバシーを, 行動可能なアルゴリズムによる会話の構築に必要なデータのみを活用することで保護する。
論文 参考訳(メタデータ) (2023-09-08T08:47:23Z) - Probing the Transition to Dataset-Level Privacy in ML Models Using an
Output-Specific and Data-Resolved Privacy Profile [23.05994842923702]
差分プライバシーメカニズムを用いてデータセットでトレーニングされたモデルが、近隣のデータセットでトレーニングされた結果の分布によってカバーされる範囲を定量化するプライバシー指標について検討する。
プライバシプロファイルは、近隣のディストリビューションで発生する不明瞭性への観察された遷移を、$epsilon$の減少として調査するために使用できることを示す。
論文 参考訳(メタデータ) (2023-06-27T20:39:07Z) - On Differential Privacy for Federated Learning in Wireless Systems with
Multiple Base Stations [90.53293906751747]
複数の基地局とセル間干渉を持つ無線システムにおける連合学習モデルを考える。
本稿では,学習過程の収束挙動を,その最適性ギャップの上限を導出することによって示す。
提案するスケジューラは,ランダムなスケジューラと比較して予測平均精度を向上する。
論文 参考訳(メタデータ) (2022-08-25T03:37:11Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
垂直ロジスティック回帰(VLR)をミニバッチ降下勾配で訓練した。
我々は、オープンソースのフェデレーション学習フレームワークのクラスにおいて、VLRの包括的で厳密なプライバシー分析を提供する。
論文 参考訳(メタデータ) (2022-07-19T05:47:30Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
フェデレートラーニング(FL)により、データ所有者はデータを共有することなく、データガバナンスを維持し、モデルトレーニングをローカルで行うことができる。
FLと関連する技術は、しばしばプライバシー保護と表現される。
この用語が適切でない理由を説明し、プライバシの形式的定義を念頭に設計されていないプロトコルに対する過度な信頼に関連するリスクを概説する。
論文 参考訳(メタデータ) (2021-12-21T08:44:05Z) - One-Bit Matrix Completion with Differential Privacy [6.409622409155275]
差分プライバシー制約下での1ビット行列補完のための新しいフレームワークを提案する。
提案手法は, 精度を損なうことなく, 高いレベルのプライバシを維持することができる。
論文 参考訳(メタデータ) (2021-10-02T03:49:55Z) - A Bayesian Framework for Information-Theoretic Probing [51.98576673620385]
我々は、探索は相互情報を近似するものとみなすべきであると論じる。
これは、表現が元の文とターゲットタスクに関する全く同じ情報をエンコードしているというかなり直感的な結論を導いた。
本稿では,ベイズ的相互情報(Bayesian mutual information)と呼ぶものを測定するための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-09-08T18:08:36Z) - A Shuffling Framework for Local Differential Privacy [40.92785300658643]
ldpデプロイメントは、敵がノイズ応答をアイデンティティにリンクできるため、推論攻撃に対して脆弱である。
別のモデルであるシャッフルDPは、ノイズ応答をランダムにシャッフルすることでこれを防止している。
雑音応答の体系的なシャッフルは、意味のあるデータ学習性を維持しつつ、特定の推論攻撃を抑えることができることを示す。
論文 参考訳(メタデータ) (2021-06-11T20:36:23Z) - Representation Learning for Sequence Data with Deep Autoencoding
Predictive Components [96.42805872177067]
本稿では,シーケンスデータの有用な表現が潜在空間における単純な構造を示すべきという直感に基づく,シーケンスデータの自己教師型表現学習法を提案する。
我々は,過去と将来のウィンドウ間の相互情報である潜在特徴系列の予測情報を最大化することにより,この潜時構造を奨励する。
提案手法は,ノイズの多い動的システムの潜時空間を復元し,タスク予測のための予測特徴を抽出し,エンコーダを大量の未ラベルデータで事前訓練する場合に音声認識を改善する。
論文 参考訳(メタデータ) (2020-10-07T03:34:01Z) - SPEED: Secure, PrivatE, and Efficient Deep learning [2.283665431721732]
私たちは、強力なプライバシー制約に対処できるディープラーニングフレームワークを導入します。
協調学習、差分プライバシー、同型暗号化に基づいて、提案手法は最先端技術に進化する。
論文 参考訳(メタデータ) (2020-06-16T19:31:52Z) - PGLP: Customizable and Rigorous Location Privacy through Policy Graph [68.3736286350014]
我々はPGLPと呼ばれる新しい位置プライバシーの概念を提案し、カスタマイズ可能で厳格なプライバシー保証を備えたプライベートロケーションをリリースするためのリッチなインターフェースを提供する。
具体的には,ユーザの位置プライバシー要件を,表現的かつカスタマイズ可能なテキスト配置ポリシーグラフを用いて形式化する。
第3に、位置露光の検出、ポリシーグラフの修復、およびカスタマイズ可能な厳格な位置プライバシーを備えたプライベートな軌跡リリースをパイプライン化する、プライベートな位置トレースリリースフレームワークを設計する。
論文 参考訳(メタデータ) (2020-05-04T04:25:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。