論文の概要: Deep Generative Models Unveil Patterns in Medical Images Through Vision-Language Conditioning
- arxiv url: http://arxiv.org/abs/2410.13823v1
- Date: Thu, 17 Oct 2024 17:48:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:19:25.123647
- Title: Deep Generative Models Unveil Patterns in Medical Images Through Vision-Language Conditioning
- Title(参考訳): ヴィジュアル・ランゲージ・コンディショニングによる医用画像の深部生成モデル
- Authors: Xiaodan Xing, Junzhi Ning, Yang Nan, Guang Yang,
- Abstract要約: 深部生成モデルでは、データセットのサイズと品質を向上することにより、医療画像解析が大幅に進歩している。
画像合成プロセスの指針として,臨床データとセグメンテーションマスクを組み合わせることによって,ハイブリッド条件による生成構造を用いる。
我々のアプローチは、画像と臨床情報の視覚的相関が低いため、従来の医療報告誘導合成よりも困難であり、課題である。
- 参考スコア(独自算出の注目度): 3.4299097748670255
- License:
- Abstract: Deep generative models have significantly advanced medical imaging analysis by enhancing dataset size and quality. Beyond mere data augmentation, our research in this paper highlights an additional, significant capacity of deep generative models: their ability to reveal and demonstrate patterns in medical images. We employ a generative structure with hybrid conditions, combining clinical data and segmentation masks to guide the image synthesis process. Furthermore, we innovatively transformed the tabular clinical data into textual descriptions. This approach simplifies the handling of missing values and also enables us to leverage large pre-trained vision-language models that investigate the relations between independent clinical entries and comprehend general terms, such as gender and smoking status. Our approach differs from and presents a more challenging task than traditional medical report-guided synthesis due to the less visual correlation of our clinical information with the images. To overcome this, we introduce a text-visual embedding mechanism that strengthens the conditions, ensuring the network effectively utilizes the provided information. Our pipeline is generalizable to both GAN-based and diffusion models. Experiments on chest CT, particularly focusing on the smoking status, demonstrated a consistent intensity shift in the lungs which is in agreement with clinical observations, indicating the effectiveness of our method in capturing and visualizing the impact of specific attributes on medical image patterns. Our methods offer a new avenue for the early detection and precise visualization of complex clinical conditions with deep generative models. All codes are https://github.com/junzhin/DGM-VLC.
- Abstract(参考訳): 深部生成モデルでは、データセットのサイズと品質を向上することにより、医療画像解析が大幅に進歩している。
この論文では、単なるデータ拡張以外にも、深層生成モデル(医療画像のパターンを明らかにして示す能力)のさらなる、重要な能力を強調します。
画像合成プロセスの指針として,臨床データとセグメンテーションマスクを組み合わせることによって,ハイブリッド条件による生成構造を用いる。
さらに,本研究は,表型臨床データをテキスト記述に革新的に変換した。
提案手法は、欠落した値の扱いを単純化し、また、独立した臨床エントリと性別や喫煙状態などの理解された一般用語との関係を調査する、大規模な事前訓練された視覚言語モデルを活用することを可能にする。
我々のアプローチは、画像と臨床情報の視覚的相関が低いため、従来の医療報告誘導合成よりも困難であり、課題である。
これを解決するために,提案する情報を効果的に活用し,条件を強化し,ネットワークが有効に活用するテキスト視覚埋め込み機構を導入する。
我々のパイプラインは、GANベースと拡散モデルの両方に一般化可能である。
胸部CT実験は,特に喫煙状態に焦点をあてて,臨床所見と一致した肺の一貫した強度変化を示し,特定の属性が医用画像パターンに与える影響を捉え,可視化するための方法の有効性を示した。
本手法は, 複雑な臨床症状の早期発見と, より深い生成モデルによる正確な可視化を行うための新しい道筋を提供する。
すべてのコードはhttps://github.com/junzhin/DGM-VLCである。
関連論文リスト
- HistoSPACE: Histology-Inspired Spatial Transcriptome Prediction And Characterization Engine [0.0]
HistoSPACEモデルは、STデータで利用可能な組織像の多様性を調べ、組織像から分子的洞察を抽出する。
モデルは、現代のアルゴリズムと比較して大きな効率性を示し、残余のクロスバリデーションにおいて0.56の相関関係を示す。
論文 参考訳(メタデータ) (2024-08-07T07:12:52Z) - Integrating Medical Imaging and Clinical Reports Using Multimodal Deep Learning for Advanced Disease Analysis [3.8758525789991896]
医用画像や臨床報告からの異種情報を深く統合する,革新的なマルチモーダル深層学習モデルを提案する。
医用画像では、畳み込みニューラルネットワークを用いて高次元の特徴を抽出し、重要な視覚情報をキャプチャした。
臨床報告テキストでは,2方向の長期・短期記憶ネットワークと注意機構を組み合わせることで,深い意味理解を実現する。
論文 参考訳(メタデータ) (2024-05-23T02:22:10Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - Beyond Images: An Integrative Multi-modal Approach to Chest X-Ray Report
Generation [47.250147322130545]
画像からテキストまでの放射線学レポート生成は,医療画像の発見を記述した放射線学レポートを自動生成することを目的としている。
既存の方法の多くは画像データのみに焦点をあてており、他の患者情報は放射線科医に公開されていない。
胸部X線レポートを生成するための多モードディープニューラルネットワークフレームワークを,非構造的臨床ノートとともにバイタルサインや症状などの構造化された患者データを統合することで提案する。
論文 参考訳(メタデータ) (2023-11-18T14:37:53Z) - EMIT-Diff: Enhancing Medical Image Segmentation via Text-Guided
Diffusion Model [4.057796755073023]
EMIT-Diffと呼ばれる医用画像合成のための制御可能な拡散モデルを開発した。
近年の拡散確率モデルを利用して、現実的で多様な合成医用画像データを生成する。
提案手法では, 合成試料が医療上の制約に適合することを確実にする。
論文 参考訳(メタデータ) (2023-10-19T16:18:02Z) - Controllable Mind Visual Diffusion Model [58.83896307930354]
脳信号の可視化は、人間の視覚システムとコンピュータビジョンモデルの間の重要なインターフェースとして機能する活発な研究領域として登場した。
我々は、制御可能なマインドビジュアルモデル拡散(CMVDM)と呼ばれる新しいアプローチを提案する。
CMVDMは属性アライメントとアシスタントネットワークを用いてfMRIデータから意味情報とシルエット情報を抽出する。
そして、制御モデルを利用して抽出した情報を画像合成に活用し、セマンティクスやシルエットの観点から視覚刺激によく似た画像を生成する。
論文 参考訳(メタデータ) (2023-05-17T11:36:40Z) - Adapting Pretrained Vision-Language Foundational Models to Medical
Imaging Domains [3.8137985834223502]
臨床の文脈を忠実に描写する医療画像の生成モデルを構築することは、医療データセットの不明瞭さを軽減するのに役立つ。
安定拡散パイプラインのサブコンポーネントを探索し、モデルを微調整して医用画像を生成する。
我々の最良の性能モデルは、安定な拡散ベースラインを改善し、合成ラジオグラフィ画像に現実的な異常を挿入するように条件付けすることができる。
論文 参考訳(メタデータ) (2022-10-09T01:43:08Z) - Cross-modal Clinical Graph Transformer for Ophthalmic Report Generation [116.87918100031153]
眼科報告生成(ORG)のためのクロスモーダルな臨床グラフ変換器(CGT)を提案する。
CGTは、デコード手順を駆動する事前知識として、臨床関係を視覚特徴に注入する。
大規模FFA-IRベンチマークの実験は、提案したCGTが従来のベンチマーク手法より優れていることを示した。
論文 参考訳(メタデータ) (2022-06-04T13:16:30Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。