論文の概要: HistoSPACE: Histology-Inspired Spatial Transcriptome Prediction And Characterization Engine
- arxiv url: http://arxiv.org/abs/2408.03592v1
- Date: Wed, 7 Aug 2024 07:12:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-08 13:34:00.777258
- Title: HistoSPACE: Histology-Inspired Spatial Transcriptome Prediction And Characterization Engine
- Title(参考訳): HistoSPACE: ヒストロジカルインスパイアされた空間トランスクリプトーム予測とキャラクタリゼーションエンジン
- Authors: Shivam Kumar, Samrat Chatterjee,
- Abstract要約: HistoSPACEモデルは、STデータで利用可能な組織像の多様性を調べ、組織像から分子的洞察を抽出する。
モデルは、現代のアルゴリズムと比較して大きな効率性を示し、残余のクロスバリデーションにおいて0.56の相関関係を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Spatial transcriptomics (ST) enables the visualization of gene expression within the context of tissue morphology. This emerging discipline has the potential to serve as a foundation for developing tools to design precision medicines. However, due to the higher costs and expertise required for such experiments, its translation into a regular clinical practice might be challenging. Despite the implementation of modern deep learning to enhance information obtained from histological images using AI, efforts have been constrained by limitations in the diversity of information. In this paper, we developed a model, HistoSPACE that explore the diversity of histological images available with ST data to extract molecular insights from tissue image. Our proposed study built an image encoder derived from universal image autoencoder. This image encoder was connected to convolution blocks to built the final model. It was further fine tuned with the help of ST-Data. This model is notably lightweight in compared to traditional histological models. Our developed model demonstrates significant efficiency compared to contemporary algorithms, revealing a correlation of 0.56 in leave-one-out cross-validation. Finally, its robustness was validated through an independent dataset, showing a well matched preditction with predefined disease pathology.
- Abstract(参考訳): 空間転写学(ST)は、組織形態学の文脈における遺伝子発現の可視化を可能にする。
この新たな分野は、精密医療を設計するためのツール開発の基礎として機能する可能性がある。
しかし、こうした実験に必要なコストや専門知識が高ければ高いほど、通常の臨床実践への翻訳は困難である可能性がある。
AIを用いた組織画像から得られる情報を強化するための近代的な深層学習の実装にもかかわらず、情報の多様性の制限によって努力が制限されている。
本稿では,組織像から分子的洞察を抽出するために,STデータを用いた組織像の多様性を探索するHistoSPACEモデルを開発した。
本研究は,ユニバーサルイメージオートエンコーダをベースとした画像エンコーダを構築した。
この画像エンコーダは、最終モデルを構築するために畳み込みブロックに接続された。
さらにST-Dataの助けを借りて調整された。
このモデルは、伝統的な組織学モデルと比較して特に軽量である。
提案手法は, 従来のアルゴリズムと比較して高い効率性を示し, その相関関係は0.56であることがわかった。
最後に、その堅牢性は独立したデータセットを通して検証され、事前に定義された疾患の病理とよく一致した予測を示す。
関連論文リスト
- Deep Generative Models Unveil Patterns in Medical Images Through Vision-Language Conditioning [3.4299097748670255]
深部生成モデルでは、データセットのサイズと品質を向上することにより、医療画像解析が大幅に進歩している。
画像合成プロセスの指針として,臨床データとセグメンテーションマスクを組み合わせることによって,ハイブリッド条件による生成構造を用いる。
我々のアプローチは、画像と臨床情報の視覚的相関が低いため、従来の医療報告誘導合成よりも困難であり、課題である。
論文 参考訳(メタデータ) (2024-10-17T17:48:36Z) - Unleashing the Potential of Synthetic Images: A Study on Histopathology Image Classification [0.12499537119440242]
病理組織像分類は様々な疾患の正確な同定と診断に重要である。
合成画像は、既存のデータセットを効果的に増強し、最終的に下流の病理組織像分類タスクの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2024-09-24T12:02:55Z) - Learned representation-guided diffusion models for large-image generation [58.192263311786824]
自己教師型学習(SSL)からの埋め込みを条件とした拡散モデルを訓練する新しいアプローチを導入する。
我々の拡散モデルは、これらの特徴を高品質な病理組織学およびリモートセンシング画像に投影することに成功した。
実画像のバリエーションを生成して実データを増やすことにより、パッチレベルおよび大規模画像分類タスクの下流精度が向上する。
論文 参考訳(メタデータ) (2023-12-12T14:45:45Z) - PathLDM: Text conditioned Latent Diffusion Model for Histopathology [62.970593674481414]
そこで我々は,高品質な病理像を生成するためのテキスト条件付き遅延拡散モデルPathLDMを紹介した。
提案手法は画像とテキストデータを融合して生成プロセスを強化する。
我々は,TCGA-BRCAデータセット上でのテキスト・ツー・イメージ生成において,SoTA FIDスコア7.64を達成し,FID30.1と最も近いテキスト・コンディショナブル・コンペティタを著しく上回った。
論文 参考訳(メタデータ) (2023-09-01T22:08:32Z) - ViT-DAE: Transformer-driven Diffusion Autoencoder for Histopathology
Image Analysis [4.724009208755395]
高品質な病理画像合成のための視覚変換器(ViT)と拡散オートエンコーダを統合したViT-DAEを提案する。
提案手法は, 実写画像生成におけるGAN法とバニラDAE法より優れている。
論文 参考訳(メタデータ) (2023-04-03T15:00:06Z) - Trade-offs in Fine-tuned Diffusion Models Between Accuracy and
Interpretability [5.865936619867771]
生成拡散モデルにおける従来の計測値とモデル解釈可能性による画像の忠実度との間に連続的なトレードオフが生じる。
我々は、真に解釈可能な生成モデルを開発するための設計原則のセットを提示する。
論文 参考訳(メタデータ) (2023-03-31T09:11:26Z) - Deepfake histological images for enhancing digital pathology [0.40631409309544836]
我々は,クラスラベルに制約された病理像を合成する生成逆ネットワークモデルを開発した。
前立腺および大腸組織像の合成におけるこの枠組みの有用性について検討した。
大腸生検によるより複雑な画像へのアプローチを拡張し,そのような組織における複雑な微小環境も再現可能であることを示す。
論文 参考訳(メタデータ) (2022-06-16T17:11:08Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
光音響トモグラフィ(pat)は形態的および機能的組織特性を回復する可能性がある。
我々は,PATデータシミュレーションの新たなアプローチを提案し,これを「シミュレーションの学習」と呼ぶ。
我々は、意味的注釈付き医療画像データに基づいて訓練されたGAN(Generative Adversarial Networks)の概念を活用して、可塑性組織ジオメトリを生成する。
論文 参考訳(メタデータ) (2021-03-29T11:30:18Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。