論文の概要: Stars, Stripes, and Silicon: Unravelling the ChatGPT's All-American, Monochrome, Cis-centric Bias
- arxiv url: http://arxiv.org/abs/2410.13868v1
- Date: Wed, 02 Oct 2024 08:55:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-27 06:14:52.680852
- Title: Stars, Stripes, and Silicon: Unravelling the ChatGPT's All-American, Monochrome, Cis-centric Bias
- Title(参考訳): スターたち、Stripeたち、そしてシリコンたち:ChatGPTのオールアメリカン、モノクローム、シス中心バイアス
- Authors: Federico Torrielli,
- Abstract要約: 論文はこれらの課題に対処するための学際的な取り組みを求めている。
ガバナンスフレームワークを確立するために、研究者、実践者、ステークホルダー間のコラボレーションの必要性を強調します。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper investigates the challenges associated with bias, toxicity, unreliability, and lack of robustness in large language models (LLMs) such as ChatGPT. It emphasizes that these issues primarily stem from the quality and diversity of data on which LLMs are trained, rather than the model architectures themselves. As LLMs are increasingly integrated into various real-world applications, their potential to negatively impact society by amplifying existing biases and generating harmful content becomes a pressing concern. The paper calls for interdisciplinary efforts to address these challenges. Additionally, it highlights the need for collaboration between researchers, practitioners, and stakeholders to establish governance frameworks, oversight, and accountability mechanisms to mitigate the harmful consequences of biased LLMs. By proactively addressing these challenges, the AI community can harness the enormous potential of LLMs for the betterment of society without perpetuating harmful biases or exacerbating existing inequalities.
- Abstract(参考訳): 本稿では,ChatGPTのような大規模言語モデル(LLM)におけるバイアス,毒性,信頼性,堅牢性の欠如に関連する課題について検討する。
これらの問題は、モデルアーキテクチャ自体よりも、LLMがトレーニングされているデータの質と多様性に起因している、と氏は強調する。
LLMは、様々な現実世界のアプリケーションに統合されつつあるため、既存のバイアスを増幅し、有害なコンテンツを生成することによって社会に悪影響を及ぼす可能性が高まっている。
論文はこれらの課題に対処するための学際的な取り組みを求めている。
さらに、ガバナンスフレームワークを確立するための研究者、実践者、ステークホルダー間のコラボレーションの必要性を強調し、偏りのあるLLMの有害な結果を軽減するための監督、説明責任のメカニズムを強調している。
これらの課題に積極的に対処することで、AIコミュニティは、有害なバイアスを持続させることなく、または既存の不平等を悪化させることなく、LLMの潜在的潜在能力を社会の改善に活用することができる。
関連論文リスト
- Large Language Models Reflect the Ideology of their Creators [73.25935570218375]
大規模言語モデル(LLM)は、自然言語を生成するために大量のデータに基づいて訓練される。
異なるLLMや言語にまたがるイデオロギー的姿勢の顕著な多様性を明らかにする。
論文 参考訳(メタデータ) (2024-10-24T04:02:30Z) - Towards Trustworthy AI: A Review of Ethical and Robust Large Language Models [1.7466076090043157]
大きな言語モデル(LLM)は多くの分野を変革できるが、その急速な開発は、監視、倫理的創造、ユーザ信頼の構築に重大な課題を生み出している。
この総合的なレビューは、意図しない害、透明性の欠如、攻撃に対する脆弱性、人的価値との整合性、環境への影響など、LLMにおける重要な信頼の問題について考察する。
これらの課題に対処するため、倫理的監視、業界説明責任、規制、公的な関与を組み合わせることを提案する。
論文 参考訳(メタデータ) (2024-06-01T14:47:58Z) - The Impossibility of Fair LLMs [59.424918263776284]
大規模言語モデル(LLM)の時代において、公正なAIの必要性はますます明確になっている。
我々は、機械学習研究者が公正性を評価するために使った技術フレームワークについてレビューする。
我々は、特定のユースケースにおける公平性を達成するためのより現実的な目標のためのガイドラインを策定する。
論文 参考訳(メタデータ) (2024-05-28T04:36:15Z) - Navigating LLM Ethics: Advancements, Challenges, and Future Directions [5.023563968303034]
本研究では,人工知能分野におけるLarge Language Models(LLM)を取り巻く倫理的問題に対処する。
LLMと他のAIシステムによってもたらされる共通の倫理的課題を探求する。
幻覚、検証可能な説明責任、検閲の複雑さの復号化といった課題を強調している。
論文 参考訳(メタデータ) (2024-05-14T15:03:05Z) - On Catastrophic Inheritance of Large Foundation Models [51.41727422011327]
大ファンデーションモデル(LFM)は素晴らしいパフォーマンスを誇示している。しかし、彼らの神話的および解釈されていないポテンシャルについて大きな懸念が持ち上がっている。
我々は, LFMに深く根ざした「破滅的継承」という, 無視された問題を特定することを提案する。
この問題の背景にある課題を議論し、事前学習と下流適応の両方からLFMの破滅的な継承を理解するためのフレームワークであるUIMを提案する。
論文 参考訳(メタデータ) (2024-02-02T21:21:55Z) - The Ethics of Interaction: Mitigating Security Threats in LLMs [1.407080246204282]
この論文は、社会や個人のプライバシに対するこのようなセキュリティ上の脅威に対する、倫理的な悪影響について論じている。
われわれは、プロンプト注入、ジェイルブレイク、個人識別情報(PII)露出、性的に明示的なコンテンツ、ヘイトベースのコンテンツという5つの主要な脅威を精査し、彼らの批判的な倫理的結果と、彼らが堅牢な戦略戦略のために作り出した緊急性を評価する。
論文 参考訳(メタデータ) (2024-01-22T17:11:37Z) - Competition-Level Problems are Effective LLM Evaluators [121.15880285283116]
本稿では,Codeforcesにおける最近のプログラミング問題の解決において,大規模言語モデル(LLM)の推論能力を評価することを目的とする。
まず,問題の発生時間,難易度,遭遇したエラーの種類など,様々な側面を考慮して,GPT-4の望ましくないゼロショット性能を総合的に評価する。
驚くべきことに、GPT-4のTheThoughtivedのパフォーマンスは、2021年9月以降、あらゆる困難と種類の問題に対して一貫して問題が減少するような崖を経験している。
論文 参考訳(メタデータ) (2023-12-04T18:58:57Z) - Challenges and Contributing Factors in the Utilization of Large Language
Models (LLMs) [10.039589841455136]
本稿では,大規模言語モデル (LLM) がニッチ分野における専門的な質問に対して正確な回答を提供するのに苦慮する領域特異性の問題について考察する。
トレーニングデータを多様化し、きめ細かいモデルを作成し、透明性と解釈可能性を高め、倫理と公正なトレーニングを取り入れることが推奨されている。
論文 参考訳(メタデータ) (2023-10-20T08:13:36Z) - Factuality Challenges in the Era of Large Language Models [113.3282633305118]
大規模言語モデル(LLM)は、誤った、誤った、あるいは誤解を招くコンテンツを生成する。
LLMは悪意のあるアプリケーションに利用することができる。
これは、ユーザーを欺く可能性があるという点で、社会に重大な課題をもたらす。
論文 参考訳(メタデータ) (2023-10-08T14:55:02Z) - Voluminous yet Vacuous? Semantic Capital in an Age of Large Language
Models [0.0]
大きな言語モデル(LLM)は、自然言語処理の領域において変換力として出現し、人間のようなテキストを生成する力を持つ。
本稿では、これらのモデルの進化、能力、限界について考察し、それらが引き起こす倫理的懸念を強調した。
論文 参考訳(メタデータ) (2023-05-29T09:26:28Z) - On the Opportunities and Risks of Foundation Models [256.61956234436553]
これらのモデルの基礎モデルは、批判的に中心的だが不完全な性格を根底から立証するものです。
本報告では,基礎モデルの可能性とリスクについて概説する。
これらの疑問に対処するためには、基礎モデルに関する重要な研究の多くは、深い学際的なコラボレーションが必要であると信じている。
論文 参考訳(メタデータ) (2021-08-16T17:50:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。