論文の概要: COOL: Efficient and Reliable Chain-Oriented Objective Logic with Neural Networks Feedback Control for Program Synthesis
- arxiv url: http://arxiv.org/abs/2410.13874v4
- Date: Tue, 14 Jan 2025 08:42:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:27:27.509288
- Title: COOL: Efficient and Reliable Chain-Oriented Objective Logic with Neural Networks Feedback Control for Program Synthesis
- Title(参考訳): COOL: プログラム合成のためのニューラルネットワークフィードバック制御による効率よく信頼性の高い連鎖指向オブジェクト指向論理
- Authors: Jipeng Han,
- Abstract要約: Logicのチェーン(CoL)は、合成プロセスをアクティビティフローに編成し、プロセスを導くための制御を提供する。
我々のアプローチは、合成をモジュール化し、ニューラルネットワークの誤予測の影響を軽減します。
リレーショナルおよびシンボリック合成タスクの実験は、CoLがDSLプログラム合成の効率と信頼性を著しく向上させることを示している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Program synthesis methods, whether formal or neural-based, lack fine-grained control and flexible modularity, which limits their adaptation to complex software development. These limitations stem from rigid Domain-Specific Language (DSL) frameworks and neural network incorrect predictions. To this end, we propose the Chain of Logic (CoL), which organizes the synthesis process into an activity flow and provides heuristic control to guide the process. Furthermore, by integrating neural networks with libraries and introducing a Neural Network Feedback Control (NNFC) mechanism, our approach modularizes synthesis and mitigates the impact of neural network mispredictions. Experiments on relational and symbolic synthesis tasks show that CoL significantly enhances the efficiency and reliability of DSL program synthesis across multiple metrics. Specifically, CoL improves accuracy by 70% while reducing tree operations by 91% and time by 95%. Additionally, NNFC further boosts accuracy by 6%, with a 64% reduction in tree operations under challenging conditions such as insufficient training data, increased difficulty, and multidomain synthesis. These improvements confirm COOL as a highly efficient and reliable program synthesis framework.
- Abstract(参考訳): プログラム合成手法は、形式的であれ神経的であれ、きめ細かな制御と柔軟性に欠けており、複雑なソフトウェア開発への適応を制限している。
これらの制限は、厳格なドメイン特化言語(DSL)フレームワークとニューラルネットワークの誤った予測に由来する。
この目的のために,本論文では,合成プロセスをアクティビティフローに整理し,プロセスの案内にヒューリスティックな制御を提供する,論理の連鎖 (CoL) を提案する。
さらに,ニューラルネットワークをライブラリと統合し,ニューラルネットワークフィードバック制御(NNFC)機構を導入することで,ニューラルネットワークの誤予測の影響を軽減し,合成をモジュール化する。
リレーショナルおよびシンボリック合成タスクの実験は、CoLが複数のメトリクスにわたるDSLプログラム合成の効率と信頼性を著しく向上することを示している。
特に、CoLは木の操作を91%減らし、時間を95%減らしながら精度を70%改善する。
さらに、NNFCはトレーニングデータ不足、難易度の向上、マルチドメイン合成といった困難な条件下でのツリー操作を64%削減し、精度を6%向上させる。
これらの改善は、COOLを高効率で信頼性の高いプログラム合成フレームワークとして確認する。
関連論文リスト
- LightCode: Light Analytical and Neural Codes for Channels with Feedback [10.619569069690185]
我々は,通信システムに適した低複雑さの符号化方式を設計することに注力する。
まず、Schalkwijk-Kailath (SK) と Gallager-Nakibouglu (GN) にインスパイアされた解析的符号化スキームであるPowerBlast が、SK と GN のスキームに対して顕著な信頼性向上を実現していることを示す。
次に、低SNR領域の信頼性を高めるために、既存のディープラーニングベースのコードと比較して、わずかなメモリと計算を使いながら、最先端の信頼性を実現する軽量ニューラルネットワークであるLightCodeを提案する。
論文 参考訳(メタデータ) (2024-03-16T01:04:34Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
ニューラルネットワークのような予測器のための新しいトレーニング原理であるLFP(Layer-wise Feedback Propagation)を提案する。
LFPは、与えられたタスクの解決へのそれぞれの貢献に基づいて、個々のニューロンに報酬を分解する。
提案手法は,ネットワークの有用な部分を補強し,有害な部分を弱めるという欲求的アプローチを実現する。
論文 参考訳(メタデータ) (2023-08-23T10:48:28Z) - An Automata-Theoretic Approach to Synthesizing Binarized Neural Networks [13.271286153792058]
量子ニューラルネットワーク(QNN)が開発され、二項化ニューラルネットワーク(BNN)は特殊なケースとしてバイナリ値に制限されている。
本稿では,指定された特性を満たすBNNの自動合成手法を提案する。
論文 参考訳(メタデータ) (2023-07-29T06:27:28Z) - Learning k-Level Structured Sparse Neural Networks Using Group Envelope Regularization [4.0554893636822]
制約のあるリソースに大規模ディープニューラルネットワークをデプロイするための新しいアプローチを導入する。
この手法は推論時間を短縮し、メモリ需要と消費電力を減らすことを目的とする。
論文 参考訳(メタデータ) (2022-12-25T15:40:05Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
ディープニューラルネットワーク(DNN)モデルは、特にリソース制限されたデバイスにおいて、実用的なアプリケーションに不可欠である。
既往の非構造的あるいは構造化された重量刈り法は、推論を真に加速することはほとんど不可能である。
ハードウェア互換のマイクロ構造レベルでの一般化された重み統一フレームワークを提案し,高い圧縮と加速度を実現する。
論文 参考訳(メタデータ) (2021-06-15T17:22:59Z) - Learning in Deep Neural Networks Using a Biologically Inspired Optimizer [5.144809478361604]
人工神経(ANN)とスパイクニューラルネット(SNN)にインスパイアされた新しい生物モデルを提案する。
GRAPESは、ニューラルネットワークの各ノードにおけるエラー信号の重量分布依存変調を実装している。
生物学的にインスパイアされたこのメカニズムは,ネットワークの収束率を体系的に改善し,ANNやSNNの分類精度を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2021-04-23T13:50:30Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
我々は,近年のディープラーニング(DL)の進歩を反映した,新しいディープ・コラボレーティブなNOMAスキームを開発する。
我々は,システム全体を包括的に最適化できるように,新しいハイブリッドカスケードディープニューラルネットワーク(DNN)アーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-07-27T12:38:37Z) - Toward fast and accurate human pose estimation via soft-gated skip
connections [97.06882200076096]
本稿では,高精度かつ高効率な人間のポーズ推定について述べる。
我々は、最先端技術よりも精度と効率を両立させる文脈において、この設計選択を再分析する。
本モデルでは,MPII と LSP のデータセットから最先端の結果が得られる。
論文 参考訳(メタデータ) (2020-02-25T18:51:51Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
大規模データセット上でディープニューラルネットワークをトレーニングするには、重要なハードウェアリソースが必要である。
これらのネットワークをトレーニングするためのワークホースであるバックプロパゲーションは、本質的に並列化が難しいシーケンシャルなプロセスである。
本稿では、深層ネットワークのトレーニングに使用できるバックプロップに代わる、神経生物学的に有望な代替手段を提案する。
論文 参考訳(メタデータ) (2020-02-10T16:20:02Z) - CounterExample Guided Neural Synthesis [12.742347465894586]
プログラム合成は困難であり、形式的な保証を提供する方法はスケーラビリティの問題に悩まされる。
ニューラルネットワークとフォーマルな推論を組み合わせることで、論理的な仕様をニューラルネットワークを正しい解へと導く一連の例に変換する。
この結果から,形式的推論に基づくガイダンスにより,ニューラルネットワークの性能が大幅に向上することが示唆された。
論文 参考訳(メタデータ) (2020-01-25T01:11:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。