論文の概要: Voting by mail: a Markov chain model for managing the security risks of election systems
- arxiv url: http://arxiv.org/abs/2410.13900v1
- Date: Tue, 15 Oct 2024 17:35:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:23:50.556890
- Title: Voting by mail: a Markov chain model for managing the security risks of election systems
- Title(参考訳): メールによる投票:選挙システムのセキュリティリスク管理のためのマルコフ連鎖モデル
- Authors: Carmen A. Haseltine, Laura A. Albert,
- Abstract要約: 本稿では,VBMプロセスのモデル化と選挙実績とリスク評価を行うために,離散時間マルコフ連鎖(DTMC)を導入する。
DTMCは動的リスクを捉え、時間とともにパフォーマンスを評価する。
この分析は、安全で信頼性の高い操作を確保するためには、投票箱と自動投票通知システムが必要であることを示唆している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The scrutiny surrounding vote-by-mail (VBM) in the United States has increased in recent years, raising concerns about the integrity and security of absentee voting. This paper addresses these issues by introducing a dynamic mathematical modeling framework for performing a risk assessment of VBM processes. We introduce a discrete-time Markov chain (DTMC) to model the VBM process and assess election performance and risk with a novel layered network approach that considers the interplay between VBM processes, malicious and non-malicious threats, and security mitigations. The time-inhomogeneous DTMC framework captures dynamic risks and evaluates performance over time. The DTMC model accounts for a spectrum of outcomes, from unintended voter errors to sophisticated, targeted attacks, representing a significant advancement in the risk assessment of VBM planning and protection. A case study based on real-world data from Milwaukee County, Wisconsin, is used to evaluate the DTMC model. The analysis includes the development of attack scenarios to assess the system's resilience and the evaluation of security measures. The analysis suggests that ballot drop boxes and automatic ballot notification systems are crucial for ensuring secure and reliable operations.
- Abstract(参考訳): 近年、米国のVBMを取り巻く精査が増加し、欠席者投票の完全性と安全に関する懸念が高まっている。
本稿では,VBMプロセスのリスク評価を行うための動的数学的モデリングフレームワークを導入することにより,これらの課題に対処する。
本稿では,VBMプロセスのモデル化と,VBMプロセス間の相互作用,悪意的および非悪意的脅威,およびセキュリティ緩和を考慮した新たな階層ネットワークアプローチにより,選挙パフォーマンスとリスクを評価するために,離散時間マルコフ連鎖(DTMC)を導入する。
時間不均一なDTMCフレームワークは動的リスクを捉え、時間とともにパフォーマンスを評価する。
DTMCモデルは、意図しない投票者エラーから、高度で標的とした攻撃まで、VBM計画と保護のリスク評価の大幅な進歩を示している。
ウィスコンシン州ミルウォーキー郡における実世界データに基づくケーススタディを用いてDTMCモデルを評価する。
この分析には、システムのレジリエンスを評価するための攻撃シナリオの開発と、セキュリティ対策の評価が含まれる。
この分析は、安全で信頼性の高い操作を確保するためには、投票箱と自動投票通知システムが必要であることを示唆している。
関連論文リスト
- SafeBench: A Safety Evaluation Framework for Multimodal Large Language Models [75.67623347512368]
MLLMの安全性評価を行うための総合的なフレームワークであるツールンを提案する。
我々のフレームワークは、包括的な有害なクエリデータセットと自動評価プロトコルで構成されています。
本研究では,広く利用されている15のオープンソースMLLMと6つの商用MLLMの大規模実験を行った。
論文 参考訳(メタデータ) (2024-10-24T17:14:40Z) - A Formal Framework for Assessing and Mitigating Emergent Security Risks in Generative AI Models: Bridging Theory and Dynamic Risk Mitigation [0.3413711585591077]
大規模言語モデル(LLM)や拡散モデルを含む生成AIシステムが急速に進歩するにつれ、その採用が増加し、新たな複雑なセキュリティリスクがもたらされた。
本稿では,これらの突発的なセキュリティリスクを分類・緩和するための新しい形式的枠組みを提案する。
我々は、潜時空間利用、マルチモーダル・クロスアタック・ベクター、フィードバックループによるモデル劣化など、未探索のリスクを特定した。
論文 参考訳(メタデータ) (2024-10-15T02:51:32Z) - A Human-Centered Risk Evaluation of Biometric Systems Using Conjoint Analysis [0.6199770411242359]
本稿では, コンジョイント分析を用いて, 監視カメラなどのリスク要因が攻撃者のモチベーションに与える影響を定量化するために, 新たな人間中心型リスク評価フレームワークを提案する。
本フレームワークは、False Acceptance Rate(FAR)とアタック確率を組み込んだリスク値を算出し、ユースケース間の総合的な比較を可能にする。
論文 参考訳(メタデータ) (2024-09-17T14:18:21Z) - EAIRiskBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [47.69642609574771]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
EAIRiskBenchは、EAIシナリオにおける自動物理的リスクアセスメントのための新しいフレームワークである。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - Threat-Informed Cyber Resilience Index: A Probabilistic Quantitative Approach to Measure Defence Effectiveness Against Cyber Attacks [0.36832029288386137]
本稿では、サイバー攻撃(キャンプ)に対する組織の防御効果を定量化するための、脅威に富んだ確率的アプローチであるサイバー抵抗指数(CRI)を紹介する。
Threat-Intelligence Based Security Assessment (TIBSA) の方法論に基づいて、複雑な脅威のインテリジェンスを、ストックマーケットインデックスに似た、実行可能な統一されたメトリクスに変換する数学的モデルを提示します。
論文 参考訳(メタデータ) (2024-06-27T17:51:48Z) - Mapping LLM Security Landscapes: A Comprehensive Stakeholder Risk Assessment Proposal [0.0]
本稿では,従来のシステムにおけるリスク評価手法のようなツールを用いたリスク評価プロセスを提案する。
我々は、潜在的な脅威要因を特定し、脆弱性要因に対して依存するシステムコンポーネントをマッピングするためのシナリオ分析を行う。
3つの主要株主グループに対する脅威もマップ化しています。
論文 参考訳(メタデータ) (2024-03-20T05:17:22Z) - Two-Stage Violence Detection Using ViTPose and Classification Models at
Smart Airports [9.53984191161849]
本研究では、スマート空港のユニークな要件に合わせて、革新的な暴力検出フレームワークを導入する。
このフレームワークは人間のポーズ推定にViTPoseの力を利用する。
実際のシナリオで堅牢なパフォーマンスを保証するため、ソリューションは統合テストが行われた。
論文 参考訳(メタデータ) (2023-08-30T21:20:15Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
本稿では,異なるAVの行動のリスクを評価するためのデータ駆動型フレームワークを提案する。
本稿では,衝突を引き起こす可能性のある名目行動から最小限の偏差を示す,対実的安全マージンの概念を提案する。
論文 参考訳(メタデータ) (2023-08-02T09:48:08Z) - Balancing detectability and performance of attacks on the control
channel of Markov Decision Processes [77.66954176188426]
マルコフ決定過程(MDPs)の制御チャネルにおける最適ステルス毒素攻撃の設計問題について検討する。
この研究は、MDPに適用された敵国・毒殺攻撃や強化学習(RL)手法に対する研究コミュニティの最近の関心に動機づけられている。
論文 参考訳(メタデータ) (2021-09-15T09:13:10Z) - Evaluating the Safety of Deep Reinforcement Learning Models using
Semi-Formal Verification [81.32981236437395]
本稿では,区間分析に基づく半形式的意思決定手法を提案する。
本手法は, 標準ベンチマークに比較して, 形式検証に対して比較結果を得る。
提案手法は, 意思決定モデルにおける安全性特性を効果的に評価することを可能にする。
論文 参考訳(メタデータ) (2020-10-19T11:18:06Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBAは、確率論的モデリング、情報理論、統計学といった側面を組み合わせた安全な強化学習のためのフレームワークである。
我々は,低次元および高次元の状態表現を含む安全な力学系ベンチマークを用いて,アルゴリズムの評価を行った。
アクティブなメトリクスと安全性の制約を詳細に分析することで,フレームワークの有効性を直感的に評価する。
論文 参考訳(メタデータ) (2020-06-12T10:40:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。