論文の概要: Automatically Interpreting Millions of Features in Large Language Models
- arxiv url: http://arxiv.org/abs/2410.13928v1
- Date: Thu, 17 Oct 2024 17:56:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:26:45.011665
- Title: Automatically Interpreting Millions of Features in Large Language Models
- Title(参考訳): 大規模言語モデルにおける何百万もの特徴の自動解釈
- Authors: Gonçalo Paulo, Alex Mallen, Caden Juang, Nora Belrose,
- Abstract要約: スパースオートエンコーダ(SAE)は、活性化を高次元の潜在空間に変換するために用いられる。
SAEの機能に関する自然言語の説明を生成・評価するためのオープンソースのパイプラインを構築します。
我々の大規模分析は、SAE潜伏剤がニューロンよりもはるかに解釈可能であることを確認しています。
- 参考スコア(独自算出の注目度): 1.8035046415192353
- License:
- Abstract: While the activations of neurons in deep neural networks usually do not have a simple human-understandable interpretation, sparse autoencoders (SAEs) can be used to transform these activations into a higher-dimensional latent space which may be more easily interpretable. However, these SAEs can have millions of distinct latent features, making it infeasible for humans to manually interpret each one. In this work, we build an open-source automated pipeline to generate and evaluate natural language explanations for SAE features using LLMs. We test our framework on SAEs of varying sizes, activation functions, and losses, trained on two different open-weight LLMs. We introduce five new techniques to score the quality of explanations that are cheaper to run than the previous state of the art. One of these techniques, intervention scoring, evaluates the interpretability of the effects of intervening on a feature, which we find explains features that are not recalled by existing methods. We propose guidelines for generating better explanations that remain valid for a broader set of activating contexts, and discuss pitfalls with existing scoring techniques. We use our explanations to measure the semantic similarity of independently trained SAEs, and find that SAEs trained on nearby layers of the residual stream are highly similar. Our large-scale analysis confirms that SAE latents are indeed much more interpretable than neurons, even when neurons are sparsified using top-$k$ postprocessing. Our code is available at https://github.com/EleutherAI/sae-auto-interp, and our explanations are available at https://huggingface.co/datasets/EleutherAI/auto_interp_explanations.
- Abstract(参考訳): ディープニューラルネットワークにおけるニューロンの活性化は通常、単純な人間の理解可能な解釈を持たないが、スパースオートエンコーダ(SAE)はこれらの活性化をより容易に解釈可能な高次元の潜在空間に変換するのに使うことができる。
しかし、これらのSAEは何百万もの異なる潜伏特性を持つため、人間がそれぞれを手動で解釈することは不可能である。
本研究では,オープンソースの自動パイプラインを構築し,LSMを用いたSAE機能の自然言語説明の生成と評価を行う。
我々は,2つの異なるオープンウェイトLLMで学習したサイズ,アクティベーション機能,損失のSAEについて,本フレームワークを検証した。
我々は,従来の最先端技術よりも安価に動作可能な説明の質を評価するための5つの新しい手法を紹介した。
これらの手法の1つ、介入スコアリングは、ある特徴に対する介入の効果の解釈可能性を評価し、既存の手法でリコールされない特徴を説明する。
本稿では,より広い範囲の活性化コンテキストに対して有効な説明を生成するためのガイドラインを提案し,既存のスコアリング手法と落とし穴を議論する。
我々は、独立に訓練されたSAEのセマンティックな類似性を測定するために、我々の説明を用いて、残留ストリームの近傍層で訓練されたSAEが極めて類似していることを発見した。
我々の大規模な分析により、SAE潜伏剤は神経細胞よりもはるかに解釈可能であることが確認された。
私たちのコードはhttps://github.com/EleutherAI/sae-auto-interpで利用可能で、説明はhttps://huggingface.co/datasets/EleutherAI/auto_interp_explanationsで入手可能です。
関連論文リスト
- Features that Make a Difference: Leveraging Gradients for Improved Dictionary Learning [4.051777802443125]
スパースオートエンコーダ(SAE)は、ニューラルネットワーク表現を抽出するための有望なアプローチである。
我々は、TopKアクティベーション関数を増強することにより、$k$-sparseのオートエンコーダアーキテクチャを変更するGradient SAEを紹介する。
g-SAEが任意の文脈でモデルを操る上で平均的に効果的である潜伏者を学ぶ証拠が見つかる。
論文 参考訳(メタデータ) (2024-11-15T18:03:52Z) - Llama Scope: Extracting Millions of Features from Llama-3.1-8B with Sparse Autoencoders [115.34050914216665]
スパースオートエンコーダ(SAE)は、言語モデルからスパース表現を抽出する強力な教師なし手法として登場した。
我々は、Llama-3.1-8B-Baseモデルの各層とサブ層で訓練された256個のSAEスイートを紹介し、32Kと128Kの特徴を持つ。
基礎モデルに基づいて訓練されたSAEのより長い文脈と微調整モデルへの一般化性を評価する。
論文 参考訳(メタデータ) (2024-10-27T17:33:49Z) - Interpretability as Compression: Reconsidering SAE Explanations of Neural Activations with MDL-SAEs [0.0]
本稿では,SAEを損失圧縮アルゴリズムとして解釈するための情報理論フレームワークを提案する。
スパーシリティではなくMDLを使用することは、ポーシリティを過度に最大化する潜在的な落とし穴を避けることができると我々は主張する。
論文 参考訳(メタデータ) (2024-10-15T01:38:03Z) - Disentangling Dense Embeddings with Sparse Autoencoders [0.0]
スパースオートエンコーダ(SAE)は、複雑なニューラルネットワークから解釈可能な特徴を抽出する可能性を示している。
大規模言語モデルからの高密度テキスト埋め込みに対するSAEの最初の応用の1つを提示する。
その結果,解釈可能性を提供しながら意味的忠実さを保っていることが明らかとなった。
論文 参考訳(メタデータ) (2024-08-01T15:46:22Z) - Interpreting Attention Layer Outputs with Sparse Autoencoders [3.201633659481912]
モデルアクティベーションを解釈可能なコンポーネントに分解することは、機械的解釈可能性において鍵となるオープンな問題である。
この作業では、注意層出力でSAEをトレーニングし、ここでもSAEがスパースで解釈可能な分解を見つけることを示す。
Sparse Autoencodersは、研究者が以前の作業よりも詳細にモデル動作を説明するのに役立つツールであることを示す。
論文 参考訳(メタデータ) (2024-06-25T17:43:13Z) - Sparse Autoencoders Find Highly Interpretable Features in Language
Models [0.0]
多意味性は、ニューラルネットワークが内部で何をしているのかについて、簡潔で理解しやすい説明を見つけるのを妨げます。
スパースオートエンコーダを用いて言語モデルの内部アクティベーションを再構築する。
我々の手法は将来の機械的解釈可能性の基盤となるかもしれない。
論文 参考訳(メタデータ) (2023-09-15T17:56:55Z) - FIND: A Function Description Benchmark for Evaluating Interpretability
Methods [86.80718559904854]
本稿では,自動解釈可能性評価のためのベンチマークスイートであるFIND(Function Interpretation and Description)を紹介する。
FINDには、トレーニングされたニューラルネットワークのコンポーネントに似た機能と、私たちが生成しようとしている種類の記述が含まれています。
本研究では、事前訓練された言語モデルを用いて、自然言語とコードにおける関数の振る舞いの記述を生成する手法を評価する。
論文 参考訳(メタデータ) (2023-09-07T17:47:26Z) - Interpretability at Scale: Identifying Causal Mechanisms in Alpaca [62.65877150123775]
本研究では、Boundless DASを用いて、命令に従う間、大規模言語モデルにおける解釈可能な因果構造を効率的に探索する。
私たちの発見は、成長し、最も広くデプロイされている言語モデルの内部構造を忠実に理解するための第一歩です。
論文 参考訳(メタデータ) (2023-05-15T17:15:40Z) - Language Model Pre-Training with Sparse Latent Typing [66.75786739499604]
そこで本研究では,多種多様な潜在型を持つ文レベルのキーワードを疎に抽出することのできる,事前学習対象Sparse Latent Typingを提案する。
実験結果から,本モデルは外部知識を使わずに,自己教師型で解釈可能な潜在型カテゴリを学習できることが示唆された。
論文 参考訳(メタデータ) (2022-10-23T00:37:08Z) - Preliminary study on using vector quantization latent spaces for TTS/VC
systems with consistent performance [55.10864476206503]
本稿では,潜在言語埋め込みをモデル化するための量子化ベクトルの利用について検討する。
トレーニングにおいて、潜伏空間上の異なるポリシーを強制することにより、潜伏言語埋め込みを得ることができる。
実験の結果,ベクトル量子化法で構築した音声クローニングシステムは,知覚的評価の点でわずかに劣化していることがわかった。
論文 参考訳(メタデータ) (2021-06-25T07:51:35Z) - Leveraging Sparse Linear Layers for Debuggable Deep Networks [86.94586860037049]
学習した深い特徴表現に疎い線形モデルを適用することで、よりデバッグ可能なニューラルネットワークを実現する方法を示す。
その結果、スパースな説明は、スプリアス相関を特定し、誤分類を説明し、視覚および言語タスクにおけるモデルバイアスを診断するのに役立ちます。
論文 参考訳(メタデータ) (2021-05-11T08:15:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。