Quantum computational complexity of matrix functions
- URL: http://arxiv.org/abs/2410.13937v1
- Date: Thu, 17 Oct 2024 18:00:03 GMT
- Title: Quantum computational complexity of matrix functions
- Authors: Santiago Cifuentes, Samson Wang, Thais L. Silva, Mario Berta, Leandro Aolita,
- Abstract summary: We study the computational complexity of two primitive problems.
We consider four functions -- monomials, Chebyshevs, the time evolution function, and the inverse function.
- Score: 2.7488316163114823
- License:
- Abstract: We investigate the dividing line between classical and quantum computational power in estimating properties of matrix functions. More precisely, we study the computational complexity of two primitive problems: given a function $f$ and a Hermitian matrix $A$, compute a matrix element of $f(A)$ or compute a local measurement on $f(A)|0\rangle^{\otimes n}$, with $|0\rangle^{\otimes n}$ an $n$-qubit reference state vector, in both cases up to additive approximation error. We consider four functions -- monomials, Chebyshev polynomials, the time evolution function, and the inverse function -- and probe the complexity across a broad landscape covering different problem input regimes. Namely, we consider two types of matrix inputs (sparse and Pauli access), matrix properties (norm, sparsity), the approximation error, and function-specific parameters. We identify BQP-complete forms of both problems for each function and then toggle the problem parameters to easier regimes to see where hardness remains, or where the problem becomes classically easy. As part of our results we make concrete a hierarchy of hardness across the functions; in parameter regimes where we have classically efficient algorithms for monomials, all three other functions remain robustly BQP-hard, or hard under usual computational complexity assumptions. In identifying classically easy regimes, among others, we show that for any polynomial of degree $\mathrm{poly}(n)$ both problems can be efficiently classically simulated when $A$ has $O(\log n)$ non-zero coefficients in the Pauli basis. This contrasts with the fact that the problems are BQP-complete in the sparse access model even for constant row sparsity, whereas the stated Pauli access efficiently constructs sparse access with row sparsity $O(\log n)$. Our work provides a catalog of efficient quantum and classical algorithms for fundamental linear-algebra tasks.
Related papers
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Moderate Exponential-time Quantum Dynamic Programming Across the Subsets for Scheduling Problems [0.20971479389679337]
Combination of Quantum Minimum Finding and dynamic programming has proved particularly efficient in improving the complexity of NP-hard problems.
In this paper, we provide a bounded-error hybrid algorithm that achieves such an improvement for a broad class of NP-hard single-machine scheduling problems.
Our algorithm reduces the exponential-part complexity compared to the best-known classical algorithm, sometimes at the cost of an additional pseudo-polynomial factor.
arXiv Detail & Related papers (2024-08-11T10:28:49Z) - Eigenpath traversal by Poisson-distributed phase randomisation [0.08192907805418585]
We present a framework for quantum computation, similar to Adiabatic Quantum Computation (AQC)
By performing randomised dephasing operations at intervals determined by a Poisson process, we are able to track the eigenspace associated to a particular eigenvalue.
We derive a simple differential equation for the fidelity, leading to general theorems bounding the time complexity of a class of algorithms.
arXiv Detail & Related papers (2024-06-06T11:33:29Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - Fast quantum algorithm for differential equations [0.5895819801677125]
We present a quantum algorithm with numerical complexity that is polylogarithmic in $N$ but is independent of $kappa$ for a large class of PDEs.
Our algorithm generates a quantum state that enables extracting features of the solution.
arXiv Detail & Related papers (2023-06-20T18:01:07Z) - Quantum Resources Required to Block-Encode a Matrix of Classical Data [56.508135743727934]
We provide circuit-level implementations and resource estimates for several methods of block-encoding a dense $Ntimes N$ matrix of classical data to precision $epsilon$.
We examine resource tradeoffs between the different approaches and explore implementations of two separate models of quantum random access memory (QRAM)
Our results go beyond simple query complexity and provide a clear picture into the resource costs when large amounts of classical data are assumed to be accessible to quantum algorithms.
arXiv Detail & Related papers (2022-06-07T18:00:01Z) - Exponential Separation between Quantum and Classical Ordered Binary
Decision Diagrams, Reordering Method and Hierarchies [68.93512627479197]
We study quantum Ordered Binary Decision Diagrams($OBDD$) model.
We prove lower bounds and upper bounds for OBDD with arbitrary order of input variables.
We extend hierarchy for read$k$-times Ordered Binary Decision Diagrams ($k$-OBDD$) of width.
arXiv Detail & Related papers (2022-04-22T12:37:56Z) - A Quantum Computer Amenable Sparse Matrix Equation Solver [0.0]
We study problems involving the solution of matrix equations, for which there currently exists no efficient, general quantum procedure.
We develop a generalization of the Harrow/Hassidim/Lloyd algorithm by providing an alternative unitary for eigenphase estimation.
This unitary has the advantage of being well defined for any arbitrary matrix equation, thereby allowing the solution procedure to be directly implemented on quantum hardware.
arXiv Detail & Related papers (2021-12-05T15:42:32Z) - Finding Global Minima via Kernel Approximations [90.42048080064849]
We consider the global minimization of smooth functions based solely on function evaluations.
In this paper, we consider an approach that jointly models the function to approximate and finds a global minimum.
arXiv Detail & Related papers (2020-12-22T12:59:30Z) - Exact Quantum Query Algorithms Outperforming Parity -- Beyond The
Symmetric functions [3.652509571098291]
We first obtain optimal exact quantum query algorithms ($Q_algo(f)$) for a direct sum based class of $Omega left( 2fracsqrtn2 right)$ non-symmetric functions.
We show that query complexity of $Q_algo$ is $lceil frac3n4 rceil$ whereas $D_oplus(f)$ varies between $n-1$ and $lceil frac3n4 rce
arXiv Detail & Related papers (2020-08-14T12:17:48Z) - FANOK: Knockoffs in Linear Time [73.5154025911318]
We describe a series of algorithms that efficiently implement Gaussian model-X knockoffs to control the false discovery rate on large scale feature selection problems.
We test our methods on problems with $p$ as large as $500,000$.
arXiv Detail & Related papers (2020-06-15T21:55:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.