論文の概要: Satellite Streaming Video QoE Prediction: A Real-World Subjective Database and Network-Level Prediction Models
- arxiv url: http://arxiv.org/abs/2410.13952v1
- Date: Thu, 17 Oct 2024 18:22:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:25:23.614324
- Title: Satellite Streaming Video QoE Prediction: A Real-World Subjective Database and Network-Level Prediction Models
- Title(参考訳): 衛星ストリーミングビデオQoE予測:実世界の主観データベースとネットワークレベル予測モデル
- Authors: Bowen Chen, Zaixi Shang, Jae Won Chung, David Lerner, Werner Robitza, Rakesh Rao Ramachandra Rao, Alexander Raake, Alan C. Bovik,
- Abstract要約: LIVE-Viasat Real-World Satellite QoE Databaseを紹介する。
このデータベースは、現実世界のストリーミングサービスから記録された179のビデオで構成されている。
本稿では,QoE予測モデルの有効性を評価することで,この新たな資源の有用性を実証する。
また、ネットワークパラメータを予測された人間の知覚スコアにマッピングする新しいモデルを作成しました。
- 参考スコア(独自算出の注目度): 59.061552498630874
- License:
- Abstract: Demand for streaming services, including satellite, continues to exhibit unprecedented growth. Internet Service Providers find themselves at the crossroads of technological advancements and rising customer expectations. To stay relevant and competitive, these ISPs must ensure their networks deliver optimal video streaming quality, a key determinant of user satisfaction. Towards this end, it is important to have accurate Quality of Experience prediction models in place. However, achieving robust performance by these models requires extensive data sets labeled by subjective opinion scores on videos impaired by diverse playback disruptions. To bridge this data gap, we introduce the LIVE-Viasat Real-World Satellite QoE Database. This database consists of 179 videos recorded from real-world streaming services affected by various authentic distortion patterns. We also conducted a comprehensive subjective study involving 54 participants, who contributed both continuous-time opinion scores and endpoint (retrospective) QoE scores. Our analysis sheds light on various determinants influencing subjective QoE, such as stall events, spatial resolutions, bitrate, and certain network parameters. We demonstrate the usefulness of this unique new resource by evaluating the efficacy of prevalent QoE-prediction models on it. We also created a new model that maps the network parameters to predicted human perception scores, which can be used by ISPs to optimize the video streaming quality of their networks. Our proposed model, which we call SatQA, is able to accurately predict QoE using only network parameters, without any access to pixel data or video-specific metadata, estimated by Spearman's Rank Order Correlation Coefficient (SROCC), Pearson Linear Correlation Coefficient (PLCC), and Root Mean Squared Error (RMSE), indicating high accuracy and reliability.
- Abstract(参考訳): 衛星を含むストリーミングサービスの需要は前例のない伸びを見せ続けている。
インターネットサービスプロバイダは、技術的進歩と顧客の期待の高まりの交差点にいる。
関連性と競争力を維持するために、これらのISPは、ユーザの満足度を決定づける重要な要因である最適なビデオストリーミング品質を提供するために、彼らのネットワークを確実に提供する必要がある。
この目的のためには、正確なQuality of Experience予測モデルを用意することが重要である。
しかし、これらのモデルによるロバストなパフォーマンスを達成するには、様々な再生障害によって損なわれるビデオの主観的意見スコアによってラベル付けされた広範囲なデータセットが必要である。
このデータギャップを埋めるために、LIVE-Viasat Real-World Satellite QoE Databaseを導入します。
このデータベースは、現実世界のストリーミングサービスから記録された179のビデオで構成されている。
また,54名の参加者を対象とした総合的な主観的研究を行い,連続的な意見スコアと(ふりかえり)QoEスコアの両方に寄与した。
本分析では, 定常事象, 空間分解能, ビットレート, ネットワークパラメータなど, 主観的QoEに影響を及ぼす様々な要因について光を当てる。
そこで本研究では,QoE予測モデルの有効性を評価することで,この新たな資源の有用性を実証する。
また、ネットワークパラメータを予測された人間の知覚スコアにマッピングする新しいモデルを作成しました。
SROCC, Pearson Linear correlation Coefficient (PLCC), Root Mean Squared Error (RMSE) を推定し, 高い精度と信頼性を示す。
関連論文リスト
- Subjective and Objective Quality-of-Experience Evaluation Study for Live Video Streaming [51.712182539961375]
ライブビデオストリーミングにおける主観的および客観的QoE評価の総合的研究を行う。
主観的なQoE研究のために、最初のライブビデオストリーミングQoEデータセットであるTaoLive QoEを紹介する。
TaoLive QoEデータセットの主観的QoEスコアを導出するために人間による研究を行った。
マルチスケールな意味的特徴と光フローに基づく動作特徴を統合したエンドツーエンドQoE評価モデルTao-QoEを提案する。
論文 参考訳(メタデータ) (2024-09-26T07:22:38Z) - Machine Learning-Driven Open-Source Framework for Assessing QoE in Multimedia Networks [0.18749305679160366]
サービスプロバイダは、ユーザの満足度を確保するために、サービスの品質とエクスペリエンスの質(QoE)の高水準を維持しなければなりません。
サービス品質に対するユーザの満足度を反映したQoEは、マルチメディアサービスにとって重要な指標です。
本稿では,マルチメディアネットワークにおけるQoEを客観的に評価するための機械学習ベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-12T18:07:06Z) - ARRQP: Anomaly Resilient Real-time QoS Prediction Framework with Graph
Convolution [0.16317061277456998]
我々は、データ内の異常に対するレジリエンスを改善することに焦点を当てたリアルタイム予測フレームワーク(ARRQP)を導入する。
ARRQPはコンテキスト情報と協調的な洞察を統合し、ユーザとサービスのインタラクションの包括的な理解を可能にする。
ベンチマークWS-DREAMデータセットの結果は、正確でタイムリーな予測を達成する上で、フレームワークの有効性を示している。
論文 参考訳(メタデータ) (2023-09-22T04:37:51Z) - Analysis of Video Quality Datasets via Design of Minimalistic Video Quality Models [71.06007696593704]
BVQA(Blind Quality Assessment)は、実世界のビデオ対応メディアアプリケーションにおけるエンドユーザの視聴体験の監視と改善に不可欠である。
実験分野として、BVQAモデルの改良は、主に数個の人間の評価されたVQAデータセットに基づいて測定されている。
最小主義的BVQAモデルを用いて,VQAデータセットの第一種計算解析を行う。
論文 参考訳(メタデータ) (2023-07-26T06:38:33Z) - Towards Robust Text-Prompted Semantic Criterion for In-the-Wild Video
Quality Assessment [54.31355080688127]
コントラスト言語画像事前学習(CLIP)を用いたテキストプロンプト付きセマンティック親和性品質指標(SAQI)とそのローカライズ版(SAQI-Local)を導入する。
BVQI-Localは前例のないパフォーマンスを示し、すべてのデータセットで既存のゼロショットインデックスを少なくとも24%上回る。
我々は、異なる指標の異なる品質問題を調べるために包括的な分析を行い、設計の有効性と合理性を示す。
論文 参考訳(メタデータ) (2023-04-28T08:06:05Z) - A Control-Centric Benchmark for Video Prediction [69.22614362800692]
本稿では,アクション条件付きビデオ予測のベンチマークを,制御ベンチマークの形式で提案する。
私たちのベンチマークには、11のタスクカテゴリと310のタスクインスタンス定義を備えたシミュレーション環境が含まれています。
次に、ベンチマークを活用して、スケールするモデルサイズ、トレーニングデータの量、モデルアンサンブルの影響を調査します。
論文 参考訳(メタデータ) (2023-04-26T17:59:45Z) - ML-powered KQI estimation for XR services. A case study on 360-Video [0.34410212782758043]
本研究は,サービスキー品質指標(KQI)の推定を可能にするMLベースのフレームワークを提案する。
そのため、これらのネットワークからの統計や設定パラメータなど、演算子に到達可能な情報のみが必要となる。
この作業は、ネットワークスライシング、仮想化、MECと連携して、E2E-Quality-of-Experienceベースのネットワーク管理のベースラインとして役立ちます。
論文 参考訳(メタデータ) (2022-12-08T17:30:23Z) - A Brief Survey on Adaptive Video Streaming Quality Assessment [30.253712568568876]
適応型ビデオストリーミングにおける品質・オブ・エクスペリエンス(QoE)の評価は,高度ネットワーク管理システムにおいて重要な役割を担っている。
我々は、適応的なビデオストリーミングのための機械学習技術を用いて、客観的QoEアセスメントモデルの様々なバリエーションを分析し、比較する。
既存のビデオストリーミングQoEアセスメントモデルにはまだ性能が限られており,実用的な通信システムに適用することは困難である。
論文 参考訳(メタデータ) (2022-02-25T21:38:14Z) - Study on the Assessment of the Quality of Experience of Streaming Video [117.44028458220427]
本稿では,ストリーミング映像のQoEの主観的推定に対する様々な客観的要因の影響について検討する。
本論文では標準的および手作り的特徴を示し,その相関とp値を示す。
SQoE-IIIデータベースは、これまでで最大の、そして最も現実的なデータベースだ。
論文 参考訳(メタデータ) (2020-12-08T18:46:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。