論文の概要: Video QoE Metrics from Encrypted Traffic: Application-agnostic Methodology
- arxiv url: http://arxiv.org/abs/2504.14720v1
- Date: Sun, 20 Apr 2025 19:18:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-29 20:32:33.958887
- Title: Video QoE Metrics from Encrypted Traffic: Application-agnostic Methodology
- Title(参考訳): 暗号化トラフィックからのビデオQoEメトリクス:アプリケーションに依存しない方法論
- Authors: Tamir Berger, Jonathan Sterenson, Raz Birman, Ofer Hadar,
- Abstract要約: 本稿では,暗号化トラフィックからの客観的QoE推定のためのアプリケーション依存アプローチを提案する。
主要なビデオQoE測定値を取得し、様々なプロプライエタリなIMVCAやVCAに適用できるようにした。
評価の結果,FPS予測の精度が85.2%,PIQEに基づく品質評価分類の精度が90.2%であった。
- 参考スコア(独自算出の注目度): 2.7123995549185325
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Instant Messaging-Based Video Call Applications (IMVCAs) and Video Conferencing Applications (VCAs) have become integral to modern communication. Ensuring a high Quality of Experience (QoE) for users in this context is critical for network operators, as network conditions significantly impact user QoE. However, network operators lack access to end-device QoE metrics due to encrypted traffic. Existing solutions estimate QoE metrics from encrypted traffic traversing the network, with the most advanced approaches leveraging machine learning models. Subsequently, the need for ground truth QoE metrics for training and validation poses a challenge, as not all video applications provide these metrics. To address this challenge, we propose an application-agnostic approach for objective QoE estimation from encrypted traffic. Independent of the video application, we obtained key video QoE metrics, enabling broad applicability to various proprietary IMVCAs and VCAs. To validate our solution, we created a diverse dataset from WhatsApp video sessions under various network conditions, comprising 25,680 seconds of traffic data and QoE metrics. Our evaluation shows high performance across the entire dataset, with 85.2% accuracy for FPS predictions within an error margin of two FPS, and 90.2% accuracy for PIQE-based quality rating classification.
- Abstract(参考訳): Instant Messaging-Based Video Call Applications (IMVCAs) と Video Conference Applications (VCAs) は現代のコミュニケーションに不可欠なものとなっている。
ネットワーク条件がユーザQoEに大きく影響するため、このコンテキストにおけるユーザに対する高品質なエクスペリエンス(QoE)の確保は、ネットワークオペレータにとって極めて重要である。
しかし、ネットワークオペレータは暗号化トラフィックのため、エンドデバイスQoEメトリクスにアクセスできない。
既存のソリューションは、ネットワークを横断する暗号化トラフィックからQoEメトリクスを推定する。
その後、トレーニングと検証のための基礎的な真実の必要性 QoEメトリクスは、すべてのビデオアプリケーションがこれらのメトリクスを提供するわけではないため、課題となる。
この課題に対処するために、暗号化されたトラフィックから客観的なQoE推定を行うアプリケーションに依存しないアプローチを提案する。
ビデオアプリケーションとは独立して、キービデオQoEメトリクスを取得し、様々なプロプライエタリなIMVCAやVCAに広く適用できるようにした。
このソリューションを検証するため、WhatsAppのビデオセッションから25,680秒のトラフィックデータとQoEメトリクスを含むさまざまなネットワーク条件下で、さまざまなデータセットを作成しました。
評価の結果,FPS予測の精度が85.2%,PIQEに基づく品質評価分類の精度が90.2%であった。
関連論文リスト
- Satellite Streaming Video QoE Prediction: A Real-World Subjective Database and Network-Level Prediction Models [59.061552498630874]
LIVE-Viasat Real-World Satellite QoE Databaseを紹介する。
このデータベースは、現実世界のストリーミングサービスから記録された179のビデオで構成されている。
本稿では,QoE予測モデルの有効性を評価することで,この新たな資源の有用性を実証する。
また、ネットワークパラメータを予測された人間の知覚スコアにマッピングする新しいモデルを作成しました。
論文 参考訳(メタデータ) (2024-10-17T18:22:50Z) - Subjective and Objective Quality-of-Experience Evaluation Study for Live Video Streaming [51.712182539961375]
ライブビデオストリーミングにおける主観的および客観的QoE評価の総合的研究を行う。
主観的なQoE研究のために、最初のライブビデオストリーミングQoEデータセットであるTaoLive QoEを紹介する。
TaoLive QoEデータセットの主観的QoEスコアを導出するために人間による研究を行った。
マルチスケールな意味的特徴と光フローに基づく動作特徴を統合したエンドツーエンドQoE評価モデルTao-QoEを提案する。
論文 参考訳(メタデータ) (2024-09-26T07:22:38Z) - Not All Pairs are Equal: Hierarchical Learning for Average-Precision-Oriented Video Retrieval [80.09819072780193]
平均精度(AP)は、関連ビデオのランキングを上位リストで評価する。
最近のビデオ検索手法は、全てのサンプル対を等しく扱うペアワイズ損失を利用する。
論文 参考訳(メタデータ) (2024-07-22T11:52:04Z) - CLIPVQA:Video Quality Assessment via CLIP [56.94085651315878]
VQA問題(CLIPVQA)に対する効率的なCLIPベースのトランスフォーマー手法を提案する。
提案したCLIPVQAは、新しい最先端のVQAパフォーマンスを実現し、既存のベンチマークVQAメソッドよりも最大で37%の汎用性を実現している。
論文 参考訳(メタデータ) (2024-07-06T02:32:28Z) - Perception Test: A Diagnostic Benchmark for Multimodal Video Models [78.64546291816117]
本稿では,事前学習したマルチモーダルモデルの知覚と推論能力を評価するために,新しいマルチモーダルビデオベンチマークを提案する。
知覚テストは、スキル(記憶、抽象化、物理学、セマンティックス)と、ビデオ、オーディオ、テキストモダリティ間の推論(記述的、説明的、予測的、反ファクト的)のタイプに焦点を当てている。
このベンチマークは、ゼロショット/少数ショットまたは限定的な微調整方式で、転送機能の事前訓練されたモデルを探索する。
論文 参考訳(メタデータ) (2023-05-23T07:54:37Z) - CANS: Communication Limited Camera Network Self-Configuration for
Intelligent Industrial Surveillance [8.360870648463653]
リアルタイムおよびインテリジェントなカメラネットワークによるビデオ監視には、大量のビデオデータによる計算集約的な視覚検出タスクが含まれる。
複数のビデオストリームは、エッジデバイスとカメラネットワークのリンク上で限られた通信リソースを競う。
ビデオ監視の適応型カメラネットワーク自己設定法(CANS)を提案する。
論文 参考訳(メタデータ) (2021-09-13T01:54:33Z) - TrafficQA: A Question Answering Benchmark and an Efficient Network for
Video Reasoning over Traffic Events [13.46045177335564]
収集した10,080本のビデオと62,535本のqaペアに基づく,新たなデータセットtrafficqa(traffic question answering)を作成しました。
複雑で実用的であるさまざまな交通イベントに対する推論能力を評価するために, さまざまな交通シナリオに対応する6つの難しい推論タスクを提案する。
また,計算効率が高く,信頼性の高いビデオ推論を実現するために,動的推論による新しい視覚ネットワークであるEclipseを提案する。
論文 参考訳(メタデータ) (2021-03-29T12:12:50Z) - ApproxDet: Content and Contention-Aware Approximate Object Detection for
Mobiles [19.41234144545467]
本稿では,モバイル機器用適応型ビデオオブジェクト検出フレームワークであるApproxDetを紹介する。
大規模なベンチマークビデオデータセット上でApproxDetを評価し,AdaScaleやYOLOv3と比較した。
ApproxDetは、幅広いコンテントやコンテンツの特徴に適応し、すべてのベースラインを誇張することができる。
論文 参考訳(メタデータ) (2020-10-21T04:11:05Z) - Non-Cooperative Game Theory Based Rate Adaptation for Dynamic Video
Streaming over HTTP [89.30855958779425]
Dynamic Adaptive Streaming over HTTP (DASH)は、新興かつ有望なマルチメディアストリーミング技術であることを示した。
本稿では,サーバの限られた輸出帯域幅をマルチユーザに対して最適に割り当てるアルゴリズムを提案し,その品質・オブ・エクスペリエンス(QoE)を公平性で最大化する。
論文 参考訳(メタデータ) (2019-12-27T01:19:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。