Benchmarking Transcriptomics Foundation Models for Perturbation Analysis : one PCA still rules them all
- URL: http://arxiv.org/abs/2410.13956v2
- Date: Mon, 04 Nov 2024 13:09:06 GMT
- Title: Benchmarking Transcriptomics Foundation Models for Perturbation Analysis : one PCA still rules them all
- Authors: Ihab Bendidi, Shawn Whitfield, Kian Kenyon-Dean, Hanene Ben Yedder, Yassir El Mesbahi, Emmanuel Noutahi, Alisandra K. Denton,
- Abstract summary: Recent advancements in transcriptomics sequencing provide new opportunities to uncover valuable insights.
No benchmark has been made to robustly evaluate the effectiveness of these rising models for perturbation analysis.
This article presents a novel biologically motivated evaluation framework and a hierarchy of perturbation analysis tasks.
- Score: 1.507700065820919
- License:
- Abstract: Understanding the relationships among genes, compounds, and their interactions in living organisms remains limited due to technological constraints and the complexity of biological data. Deep learning has shown promise in exploring these relationships using various data types. However, transcriptomics, which provides detailed insights into cellular states, is still underused due to its high noise levels and limited data availability. Recent advancements in transcriptomics sequencing provide new opportunities to uncover valuable insights, especially with the rise of many new foundation models for transcriptomics, yet no benchmark has been made to robustly evaluate the effectiveness of these rising models for perturbation analysis. This article presents a novel biologically motivated evaluation framework and a hierarchy of perturbation analysis tasks for comparing the performance of pretrained foundation models to each other and to more classical techniques of learning from transcriptomics data. We compile diverse public datasets from different sequencing techniques and cell lines to assess models performance. Our approach identifies scVI and PCA to be far better suited models for understanding biological perturbations in comparison to existing foundation models, especially in their application in real-world scenarios.
Related papers
- PerturBench: Benchmarking Machine Learning Models for Cellular Perturbation Analysis [14.526536510805755]
We present a comprehensive framework for predicting the effects of perturbations in single cells, designed to standardize benchmarking in this rapidly evolving field.
Our framework, PerturBench, includes a user-friendly platform, diverse datasets, metrics for fair model comparison, and detailed performance analysis.
arXiv Detail & Related papers (2024-08-20T07:40:20Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
We introduce GenBench, a benchmarking suite specifically tailored for evaluating the efficacy of Genomic Foundation Models.
GenBench offers a modular and expandable framework that encapsulates a variety of state-of-the-art methodologies.
We provide a nuanced analysis of the interplay between model architecture and dataset characteristics on task-specific performance.
arXiv Detail & Related papers (2024-06-01T08:01:05Z) - Rethinking Model Prototyping through the MedMNIST+ Dataset Collection [0.11999555634662634]
This work presents a benchmark for the MedMNIST+ database to diversify the evaluation landscape.
We conduct a thorough analysis of common convolutional neural networks (CNNs) and Transformer-based architectures, for medical image classification.
Our findings suggest that computationally efficient training schemes and modern foundation models hold promise in bridging the gap between expensive end-to-end training and more resource-refined approaches.
arXiv Detail & Related papers (2024-04-24T10:19:25Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - Improving Biomedical Entity Linking with Retrieval-enhanced Learning [53.24726622142558]
$k$NN-BioEL provides a BioEL model with the ability to reference similar instances from the entire training corpus as clues for prediction.
We show that $k$NN-BioEL outperforms state-of-the-art baselines on several datasets.
arXiv Detail & Related papers (2023-12-15T14:04:23Z) - Does Synthetic Data Make Large Language Models More Efficient? [0.0]
This paper explores the nuances of synthetic data generation in NLP.
We highlight its advantages, including data augmentation potential and the introduction of structured variety.
We demonstrate the impact of template-based synthetic data on the performance of modern transformer models.
arXiv Detail & Related papers (2023-10-11T19:16:09Z) - Incorporating Prior Knowledge in Deep Learning Models via Pathway
Activity Autoencoders [5.950889585409067]
We propose a novel prior-knowledge-based deep auto-encoding framework, PAAE, for RNA-seq data in cancer.
We show that, despite having access to a smaller set of features, our PAAE and PAVAE models achieve better out-of-set reconstruction results compared to common methodologies.
arXiv Detail & Related papers (2023-06-09T11:12:55Z) - Are Neural Topic Models Broken? [81.15470302729638]
We study the relationship between automated and human evaluation of topic models.
We find that neural topic models fare worse in both respects compared to an established classical method.
arXiv Detail & Related papers (2022-10-28T14:38:50Z) - Using Explainable Boosting Machine to Compare Idiographic and Nomothetic
Approaches for Ecological Momentary Assessment Data [2.0824228840987447]
This paper explores the use of non-linear interpretable machine learning (ML) models in classification problems.
Various ensembles of trees are compared to linear models using imbalanced synthetic and real-world datasets.
In one of the two real-world datasets, knowledge distillation method achieves improved AUC scores.
arXiv Detail & Related papers (2022-04-04T17:56:37Z) - Artificial Text Detection via Examining the Topology of Attention Maps [58.46367297712477]
We propose three novel types of interpretable topological features for this task based on Topological Data Analysis (TDA)
We empirically show that the features derived from the BERT model outperform count- and neural-based baselines up to 10% on three common datasets.
The probing analysis of the features reveals their sensitivity to the surface and syntactic properties.
arXiv Detail & Related papers (2021-09-10T12:13:45Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.