Incorporating Prior Knowledge in Deep Learning Models via Pathway
Activity Autoencoders
- URL: http://arxiv.org/abs/2306.05813v1
- Date: Fri, 9 Jun 2023 11:12:55 GMT
- Title: Incorporating Prior Knowledge in Deep Learning Models via Pathway
Activity Autoencoders
- Authors: Pedro Henrique da Costa Avelar, Min Wu, Sophia Tsoka
- Abstract summary: We propose a novel prior-knowledge-based deep auto-encoding framework, PAAE, for RNA-seq data in cancer.
We show that, despite having access to a smaller set of features, our PAAE and PAVAE models achieve better out-of-set reconstruction results compared to common methodologies.
- Score: 5.950889585409067
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivation: Despite advances in the computational analysis of high-throughput
molecular profiling assays (e.g. transcriptomics), a dichotomy exists between
methods that are simple and interpretable, and ones that are complex but with
lower degree of interpretability. Furthermore, very few methods deal with
trying to translate interpretability in biologically relevant terms, such as
known pathway cascades. Biological pathways reflecting signalling events or
metabolic conversions are Small improvements or modifications of existing
algorithms will generally not be suitable, unless novel biological results have
been predicted and verified. Determining which pathways are implicated in
disease and incorporating such pathway data as prior knowledge may enhance
predictive modelling and personalised strategies for diagnosis, treatment and
prevention of disease.
Results: We propose a novel prior-knowledge-based deep auto-encoding
framework, PAAE, together with its accompanying generative variant, PAVAE, for
RNA-seq data in cancer. Through comprehensive comparisons among various
learning models, we show that, despite having access to a smaller set of
features, our PAAE and PAVAE models achieve better out-of-set reconstruction
results compared to common methodologies. Furthermore, we compare our model
with equivalent baselines on a classification task and show that they achieve
better results than models which have access to the full input gene set.
Another result is that using vanilla variational frameworks might negatively
impact both reconstruction outputs as well as classification performance.
Finally, our work directly contributes by providing comprehensive
interpretability analyses on our models on top of improving prognostication for
translational medicine.
Related papers
- Do Histopathological Foundation Models Eliminate Batch Effects? A Comparative Study [1.5142296396121897]
We show that the feature embeddings of the foundation models still contain distinct hospital signatures that can lead to biased predictions and misclassifications.
Our work provides a novel perspective on the evaluation of medical foundation models, paving the way for more robust pretraining strategies and downstream predictors.
arXiv Detail & Related papers (2024-11-08T11:39:03Z) - Integrating Large Language Models for Genetic Variant Classification [12.244115429231888]
Large Language Models (LLMs) have emerged as transformative tools in genetics.
This study investigates the integration of state-of-the-art LLMs, including GPN-MSA, ESM1b, and AlphaMissense.
Our approach evaluates these integrated models using the well-annotated ProteinGym and ClinVar datasets.
arXiv Detail & Related papers (2024-11-07T13:45:56Z) - Benchmarking Transcriptomics Foundation Models for Perturbation Analysis : one PCA still rules them all [1.507700065820919]
Recent advancements in transcriptomics sequencing provide new opportunities to uncover valuable insights.
No benchmark has been made to robustly evaluate the effectiveness of these rising models for perturbation analysis.
This article presents a novel biologically motivated evaluation framework and a hierarchy of perturbation analysis tasks.
arXiv Detail & Related papers (2024-10-17T18:27:51Z) - Transformer-Based Self-Supervised Learning for Histopathological Classification of Ischemic Stroke Clot Origin [0.0]
Identifying the thromboembolism source in ischemic stroke is crucial for treatment and secondary prevention.
This study describes a self-supervised deep learning approach in digital pathology of emboli for classifying ischemic stroke clot origin.
arXiv Detail & Related papers (2024-05-01T23:40:12Z) - Improving Biomedical Entity Linking with Retrieval-enhanced Learning [53.24726622142558]
$k$NN-BioEL provides a BioEL model with the ability to reference similar instances from the entire training corpus as clues for prediction.
We show that $k$NN-BioEL outperforms state-of-the-art baselines on several datasets.
arXiv Detail & Related papers (2023-12-15T14:04:23Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - Using Explainable Boosting Machine to Compare Idiographic and Nomothetic
Approaches for Ecological Momentary Assessment Data [2.0824228840987447]
This paper explores the use of non-linear interpretable machine learning (ML) models in classification problems.
Various ensembles of trees are compared to linear models using imbalanced synthetic and real-world datasets.
In one of the two real-world datasets, knowledge distillation method achieves improved AUC scores.
arXiv Detail & Related papers (2022-04-04T17:56:37Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
We train >35,000 neural network models, sweeping over common featurization techniques.
We found the RNA-seq to be highly redundant and informative even with subsets larger than 128 features.
arXiv Detail & Related papers (2020-04-30T20:42:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.