論文の概要: From Distributional Robustness to Robust Statistics: A Confidence Sets Perspective
- arxiv url: http://arxiv.org/abs/2410.14008v1
- Date: Thu, 17 Oct 2024 20:20:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:24:11.969779
- Title: From Distributional Robustness to Robust Statistics: A Confidence Sets Perspective
- Title(参考訳): 分布ロバスト性からロバスト統計へ:信頼と展望
- Authors: Gabriel Chan, Bart Van Parys, Amine Bennouna,
- Abstract要約: クルバック・リーブラーの発散と全変動距離に基づくDRO曖昧性集合は、一様最小であることを示す。
パラメトリックな仮定が未知の分布に課されるとき、あいまいさ集合はハッバーが提案した最適推定器に基づく信頼集合よりも大きくなることが証明される。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We establish a connection between distributionally robust optimization (DRO) and classical robust statistics. We demonstrate that this connection arises naturally in the context of estimation under data corruption, where the goal is to construct ``minimal'' confidence sets for the unknown data-generating distribution. Specifically, we show that a DRO ambiguity set, based on the Kullback-Leibler divergence and total variation distance, is uniformly minimal, meaning it represents the smallest confidence set that contains the unknown distribution with at a given confidence power. Moreover, we prove that when parametric assumptions are imposed on the unknown distribution, the ambiguity set is never larger than a confidence set based on the optimal estimator proposed by Huber. This insight reveals that the commonly observed conservatism of DRO formulations is not intrinsic to these formulations themselves but rather stems from the non-parametric framework in which these formulations are employed.
- Abstract(参考訳): 分散ロバスト最適化(DRO)と古典ロバスト統計との接続を確立する。
この関係は、未知のデータ生成分布に対して ``minimal'' の信頼セットを構築することが目的であるデータ汚濁下での推測の文脈で自然に発生することを実証する。
具体的には、クルバック・リーブラーの発散と全変動距離に基づくDRO曖昧性集合が一様最小であり、すなわち、与えられた信頼力を持つ未知の分布を含む最小の信頼度集合であることを示す。
さらに、未知の分布にパラメトリック仮定を課すと、あいまいさ集合はハッバーが提案した最適推定器に基づく信頼集合よりも大きくなることが証明される。
この知見は、一般的に観察されるDRO定式化の保守性は、これらの定式化自体に固有のものではなく、これらの定式化が用いられる非パラメトリックな枠組みに由来することを示している。
関連論文リスト
- Distributionally Robust Optimisation with Bayesian Ambiguity Sets [8.642152250082368]
ベイズアンビグニティセット(DRO-BAS)を用いた分布ロバスト最適化について紹介する。
DRO-BASは、後部インフォームドのあいまいさセットよりも最悪のケースリスクを最適化することで、モデルの不確実性に対してヘッジを行う。
本手法は,多くの指数関数族に対して閉形式双対表現を許容することを示す。
論文 参考訳(メタデータ) (2024-09-05T12:59:38Z) - Distributionally robust risk evaluation with an isotonic constraint [20.74502777102024]
分布的に堅牢な学習は、不確実な分布の集合内で最悪のケースの統計性能を制御することを目的としている。
本稿では,未知のターゲット分布が推定値と異なる方法に関する事前情報を組み込んだDRLの形状制約手法を提案する。
合成データと実データの両方に関する実証研究は、提案した形状制約手法の精度の向上を実証している。
論文 参考訳(メタデータ) (2024-07-09T13:56:34Z) - Distributional Shift-Aware Off-Policy Interval Estimation: A Unified
Error Quantification Framework [8.572441599469597]
本研究では、無限水平マルコフ決定過程の文脈における高信頼オフ政治評価について検討する。
目的は、未知の行動ポリシーから事前に収集されたオフラインデータのみを用いて、対象の政策値に対する信頼区間(CI)を確立することである。
提案アルゴリズムは, 非線形関数近似設定においても, サンプル効率, 誤差ローバスト, 既知収束性を示す。
論文 参考訳(メタデータ) (2023-09-23T06:35:44Z) - On the Variance, Admissibility, and Stability of Empirical Risk
Minimization [80.26309576810844]
2乗損失を持つ経験的リスク最小化(ERM)は、極小最適誤差率に達する可能性がある。
軽微な仮定では、ERMの準最適性はばらつきよりも大きなバイアスによるものでなければならない。
また、我々の推定は、非ドンスカー類に対するCaponnetto と Rakhlin (2006) の主な結果を補完する ERM の安定性を示唆している。
論文 参考訳(メタデータ) (2023-05-29T15:25:48Z) - Robustness and Accuracy Could Be Reconcilable by (Proper) Definition [109.62614226793833]
強靭性と精度のトレードオフは、敵文学において広く研究されている。
局所的不変性の帰納的バイアスを課す不適切に定義された頑健な誤差に由来する可能性がある。
定義上、SCOREは、最悪のケースの不確実性に対処しながら、堅牢性と正確性の間の和解を促進する。
論文 参考訳(メタデータ) (2022-02-21T10:36:09Z) - Robust Estimation for Nonparametric Families via Generative Adversarial
Networks [92.64483100338724]
我々は,高次元ロバストな統計問題を解くためにGAN(Generative Adversarial Networks)を設計するためのフレームワークを提供する。
我々の研究は、これらをロバスト平均推定、第二モーメント推定、ロバスト線形回帰に拡張する。
技術面では、提案したGAN損失は、スムーズで一般化されたコルモゴロフ-スミルノフ距離と見なすことができる。
論文 参考訳(メタデータ) (2022-02-02T20:11:33Z) - Private Robust Estimation by Stabilizing Convex Relaxations [22.513117502159922]
$(epsilon, delta)$-differentially private (DP)
$(epsilon, delta)$-differentially private (DP)
$(epsilon, delta)$-differentially private (DP)
論文 参考訳(メタデータ) (2021-12-07T07:47:37Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
我々は、アレータリック不確実性はデータの固有の特性であり、偏見のないオラクルモデルでのみ正確に推定できると論じる。
そこで本研究では,軌道不確実性推定のためのオラクルモデルを近似するために,列車時の新しいサンプリングと選択戦略を提案する。
以上の結果から,提案手法は精度の高い決定論的結果と確実な不確実性推定の両方を達成できることが示唆された。
論文 参考訳(メタデータ) (2021-11-22T08:54:10Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Nonparametric Estimation of Uncertainty Sets for Robust Optimization [2.741266294612776]
本研究では、ロバスト最適化問題に対する不確実性集合構築のためのデータ駆動手法について検討する。
確率質量が与えられた目標質量に近似することが保証された不確実性集合を推定するための非パラメトリック手法を提供する。
論文 参考訳(メタデータ) (2020-04-07T01:47:55Z) - Distributional Robustness and Regularization in Reinforcement Learning [62.23012916708608]
経験値関数の新しい正規化器を導入し、ワッサーシュタイン分布のロバストな値関数を下限とすることを示す。
強化学習における$textitexternalな不確実性に対処するための実用的なツールとして正規化を使用することを提案する。
論文 参考訳(メタデータ) (2020-03-05T19:56:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。