論文の概要: Auditing and Enforcing Conditional Fairness via Optimal Transport
- arxiv url: http://arxiv.org/abs/2410.14029v1
- Date: Thu, 17 Oct 2024 21:08:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:26:51.757415
- Title: Auditing and Enforcing Conditional Fairness via Optimal Transport
- Title(参考訳): 最適輸送による条件フェアネスの監査と実施
- Authors: Mohsen Ghassemi, Alan Mishler, Niccolo Dalmasso, Luhao Zhang, Vamsi K. Potluru, Tucker Balch, Manuela Veloso,
- Abstract要約: 条件付き人口均等(きゅうきょくせい、英: Conditional population parity、CDP)とは、ある追加機能や特徴セットを条件に、予測モデルや決定過程の人口均等度を測る尺度である。
多くのアルゴリズム的公平性技術は人口統計学的平等を狙うために存在するが、CDPは達成がずっと難しい。
最適な輸送文献から借りた統計的距離に依存する条件付き人口格差(CDD)の新たな尺度を提案する。
- 参考スコア(独自算出の注目度): 8.568682962242766
- License:
- Abstract: Conditional demographic parity (CDP) is a measure of the demographic parity of a predictive model or decision process when conditioning on an additional feature or set of features. Many algorithmic fairness techniques exist to target demographic parity, but CDP is much harder to achieve, particularly when the conditioning variable has many levels and/or when the model outputs are continuous. The problem of auditing and enforcing CDP is understudied in the literature. In light of this, we propose novel measures of {conditional demographic disparity (CDD)} which rely on statistical distances borrowed from the optimal transport literature. We further design and evaluate regularization-based approaches based on these CDD measures. Our methods, \fairbit{} and \fairlp{}, allow us to target CDP even when the conditioning variable has many levels. When model outputs are continuous, our methods target full equality of the conditional distributions, unlike other methods that only consider first moments or related proxy quantities. We validate the efficacy of our approaches on real-world datasets.
- Abstract(参考訳): 条件付き人口均等(きゅうきょくせい、英: Conditional population parity、CDP)とは、ある追加機能や特徴セットを条件に、予測モデルや決定過程の人口均等度を測る尺度である。
多くのアルゴリズムフェアネス技術は、人口統計学の同等性を狙うために存在するが、CDPは、特に条件変数が多くのレベルを持つ場合や、モデル出力が連続している場合において、はるかに困難である。
文献では, CDP の監査・実施の問題点が検討されている。
そこで本稿では, 最適輸送文献から借用した統計的距離に依存する, 条件付き人口格差(CDD)の新たな尺度を提案する。
これらのCDD尺度に基づいて正規化に基づくアプローチをさらに設計し評価する。
我々の方法である \fairbit{} と \fairlp{} は条件変数が多くのレベルを持つ場合でも CDP をターゲットとすることができる。
モデル出力が連続である場合、我々の手法は条件分布の完全等式を目標とします。
実世界のデータセットに対するアプローチの有効性を検証する。
関連論文リスト
- Stratified Prediction-Powered Inference for Hybrid Language Model Evaluation [62.2436697657307]
予測駆動推論(英: Prediction-powered Inference, PPI)は、人間ラベル付き限られたデータに基づいて統計的推定を改善する手法である。
我々はStratPPI(Stratified Prediction-Powered Inference)という手法を提案する。
単純なデータ階層化戦略を用いることで,基礎的なPPI推定精度を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2024-06-06T17:37:39Z) - What Are the Odds? Improving the foundations of Statistical Model Checking [3.789219860006095]
マルコフ決定プロセス(MDP)は不確実性の下での意思決定の基本的なモデルである。
従来の検証アルゴリズムは、MDPの振る舞いを管理する確率の正確な知識を前提としている。
我々はMDPの知識を活用する専門的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-04-08T11:47:46Z) - On Pitfalls of Test-Time Adaptation [82.8392232222119]
TTA(Test-Time Adaptation)は、分散シフトの下で堅牢性に取り組むための有望なアプローチとして登場した。
TTABは,10の最先端アルゴリズム,多種多様な分散シフト,および2つの評価プロトコルを含むテスト時間適応ベンチマークである。
論文 参考訳(メタデータ) (2023-06-06T09:35:29Z) - STEEL: Singularity-aware Reinforcement Learning [14.424199399139804]
バッチ強化学習(RL)は、事前収集されたデータを利用して最適なポリシーを見つけることを目的としている。
本稿では,状態空間と行動空間の両方に特異性を持たせる新しいバッチRLアルゴリズムを提案する。
悲観主義といくつかの技術的条件を利用して、提案したアルゴリズムに対する最初の有限サンプル後悔保証を導出する。
論文 参考訳(メタデータ) (2023-01-30T18:29:35Z) - Addressing Distribution Shift at Test Time in Pre-trained Language
Models [3.655021726150369]
State-of-the-the-art pre-trained Language Model (PLM)は、多くの言語処理タスクに適用された場合、他のモデルよりも優れている。
PLMは分散シフト下で性能が低下することが判明した。
本研究では,分散シフト下での試験時間におけるPLMの性能を向上させる手法を提案する。
論文 参考訳(メタデータ) (2022-12-05T16:04:54Z) - Conditional Feature Importance for Mixed Data [1.6114012813668934]
ノックオフサンプリングを用いた条件付き予測インパクト(CPI)フレームワークを開発した。
提案するワークフローは,I型エラーを制御し,高い出力を達成し,他の条件FI測定結果と一致していることを示す。
本研究は,混合データに対して,統計的に適切な,専門的な手法を開発することの必要性を強調した。
論文 参考訳(メタデータ) (2022-10-06T16:52:38Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Autoregressive Score Matching [113.4502004812927]
自動回帰条件スコアモデル(AR-CSM)を提案する。
AR-CSMモデルでは、このデータ分布とモデル分布のばらつきを効率的に計算し、最適化することができ、高価なサンプリングや対向訓練を必要としない。
本研究では,合成データに対する密度推定,画像生成,画像復調,暗黙エンコーダを用いた潜在変数モデルの訓練に応用できることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:01:24Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z) - Pre-training Is (Almost) All You Need: An Application to Commonsense
Reasoning [61.32992639292889]
事前学習されたトランスモデルの微調整は、一般的なNLPタスクを解決するための標準的なアプローチとなっている。
そこで本研究では,可視性ランキングタスクをフルテキスト形式でキャストする新たなスコアリング手法を提案する。
提案手法は, ランダム再起動にまたがって, より安定した学習段階を提供することを示す。
論文 参考訳(メタデータ) (2020-04-29T10:54:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。