Graph Neural Flows for Unveiling Systemic Interactions Among Irregularly Sampled Time Series
- URL: http://arxiv.org/abs/2410.14030v2
- Date: Wed, 30 Oct 2024 10:25:43 GMT
- Title: Graph Neural Flows for Unveiling Systemic Interactions Among Irregularly Sampled Time Series
- Authors: Giangiacomo Mercatali, Andre Freitas, Jie Chen,
- Abstract summary: We develop a graph-based model that unveils the systemic interactions of time series observed at irregular time points.
We validate our approach on several tasks, including time series classification and forecasting, to demonstrate its efficacy.
- Score: 5.460420960898444
- License:
- Abstract: Interacting systems are prevalent in nature. It is challenging to accurately predict the dynamics of the system if its constituent components are analyzed independently. We develop a graph-based model that unveils the systemic interactions of time series observed at irregular time points, by using a directed acyclic graph to model the conditional dependencies (a form of causal notation) of the system components and learning this graph in tandem with a continuous-time model that parameterizes the solution curves of ordinary differential equations (ODEs). Our technique, a graph neural flow, leads to substantial enhancements over non-graph-based methods, as well as graph-based methods without the modeling of conditional dependencies. We validate our approach on several tasks, including time series classification and forecasting, to demonstrate its efficacy.
Related papers
- State Space Models on Temporal Graphs: A First-Principles Study [30.531930200222423]
Research on deep graph learning has shifted from static graphs to temporal graphs in response to real-world complex systems that exhibit dynamic behaviors.
Sequence models such as RNNs or Transformers have long been the predominant backbone networks for modeling such temporal graphs.
We develop GraphSSM, a graph state space model for modeling the dynamics of temporal graphs.
arXiv Detail & Related papers (2024-06-03T02:56:11Z) - Inferring dynamic regulatory interaction graphs from time series data
with perturbations [14.935318448625718]
We propose Regulatory Temporal Interaction Network Inference (RiTINI) for inferring time-varying interaction graphs in complex systems.
RiTINI uses a novel combination of space-and-time graph attentions and graph neural ordinary differential equations (ODEs)
We evaluate RiTINI's performance on various simulated and real-world datasets.
arXiv Detail & Related papers (2023-06-13T14:25:26Z) - Temporal Graph Neural Networks for Irregular Data [14.653008985229615]
TGNN4I model is designed to handle both irregular time steps and partial observations of the graph.
Time-continuous dynamics enables the model to make predictions at arbitrary time steps.
Experiments on simulated data and real-world data from traffic and climate modeling validate the usefulness of both the graph structure and time-continuous dynamics.
arXiv Detail & Related papers (2023-02-16T16:47:55Z) - Learning the Evolutionary and Multi-scale Graph Structure for
Multivariate Time Series Forecasting [50.901984244738806]
We show how to model the evolutionary and multi-scale interactions of time series.
In particular, we first provide a hierarchical graph structure cooperated with the dilated convolution to capture the scale-specific correlations.
A unified neural network is provided to integrate the components above to get the final prediction.
arXiv Detail & Related papers (2022-06-28T08:11:12Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
We propose a novel score-based generative model for graphs with a continuous-time framework.
We show that our method is able to generate molecules that lie close to the training distribution yet do not violate the chemical valency rule.
arXiv Detail & Related papers (2022-02-05T08:21:04Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
We consider causal discovery in continuous-time for the study of dynamical systems.
We propose a causal discovery algorithm based on penalized Neural ODEs.
arXiv Detail & Related papers (2021-05-06T08:48:02Z) - Efficient Variational Bayesian Structure Learning of Dynamic Graphical
Models [19.591265962713837]
Estimating time-varying graphical models is of paramount importance in various social, financial, biological, and engineering systems.
Existing methods require extensive tuning of parameters that control the graph sparsity and temporal smoothness.
We propose a low-complexity tuning-free Bayesian approach, named BADGE.
arXiv Detail & Related papers (2020-09-16T14:19:23Z) - Structural Landmarking and Interaction Modelling: on Resolution Dilemmas
in Graph Classification [50.83222170524406]
We study the intrinsic difficulty in graph classification under the unified concept of resolution dilemmas''
We propose SLIM'', an inductive neural network model for Structural Landmarking and Interaction Modelling.
arXiv Detail & Related papers (2020-06-29T01:01:42Z) - Learned Factor Graphs for Inference from Stationary Time Sequences [107.63351413549992]
We propose a framework that combines model-based algorithms and data-driven ML tools for stationary time sequences.
neural networks are developed to separately learn specific components of a factor graph describing the distribution of the time sequence.
We present an inference algorithm based on learned stationary factor graphs, which learns to implement the sum-product scheme from labeled data.
arXiv Detail & Related papers (2020-06-05T07:06:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.