論文の概要: Estimating the Causal Effects of T Cell Receptors
- arxiv url: http://arxiv.org/abs/2410.14127v1
- Date: Fri, 18 Oct 2024 02:45:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:26:17.736563
- Title: Estimating the Causal Effects of T Cell Receptors
- Title(参考訳): T細胞受容体の因果効果の推定
- Authors: Eli N. Weinstein, Elizabeth B. Wood, David M. Blei,
- Abstract要約: 患者に対するT細胞受容体配列の因果的影響を推測する手法を提案する。
我々のアプローチは、患者の環境や生活史など、保存されていない共同設立者に対して正当である。
デモでは、TCRが新型コロナウイルスの重症度に与える影響を分析するために使用します。
- 参考スコア(独自算出の注目度): 20.01390828400336
- License:
- Abstract: A central question in human immunology is how a patient's repertoire of T cells impacts disease. Here, we introduce a method to infer the causal effects of T cell receptor (TCR) sequences on patient outcomes using observational TCR repertoire sequencing data and clinical outcomes data. Our approach corrects for unobserved confounders, such as a patient's environment and life history, by using the patient's immature, pre-selection TCR repertoire. The pre-selection repertoire can be estimated from nonproductive TCR data, which is widely available. It is generated by a randomized mutational process, V(D)J recombination, which provides a natural experiment. We show formally how to use the pre-selection repertoire to draw causal inferences, and develop a scalable neural-network estimator for our identification formula. Our method produces an estimate of the effect of interventions that add a specific TCR sequence to patient repertoires. As a demonstration, we use it to analyze the effects of TCRs on COVID-19 severity, uncovering potentially therapeutic TCRs that are (1) observed in patients, (2) bind SARS-CoV-2 antigens in vitro and (3) have strong positive effects on clinical outcomes.
- Abstract(参考訳): ヒト免疫学における中心的な問題は、患者のT細胞のレパートリーが病気にどのように影響するかである。
本稿では,T細胞受容体(TCR)配列が患者予後に与える影響を,TCRレパートリーシークエンシングデータと臨床成績データを用いて推定する方法を提案する。
本手法は, 患者の未熟なTCRレパートリーを用いて, 患者の環境や生活史など, 保存されていない共同創設者を補正する。
選択前のレパートリーは、広く利用可能な非生産的なTCRデータから推定することができる。
ランダムな突然変異過程であるV(D)J再結合によって生成され、自然な実験を提供する。
我々は、因果推論の描画に事前選択レパートリーの使用法を正式に示し、識別式のためのスケーラブルなニューラルネットワーク推定器を開発した。
本手法は,患者レパートリーに特定のTCR配列を付加する介入の効果を推定する。
実験では,(1)患者で観察される治療薬TCR,(2)SARS-CoV-2抗原をin vitroで結合し,(3)臨床効果に強い陽性効果を示す。
関連論文リスト
- A large language model for predicting T cell receptor-antigen binding specificity [4.120928123714289]
本稿では,モデル一般化の限界を克服するMasked Language Model (MLM)を提案する。
具体的には、ランダムにシーケンスセグメントをマスキングし、tcrLMをトレーニングしてマスクセグメントを推論し、TCRシーケンスから表現的特徴を抽出する。
実験の結果,tcrLM は独立テストセットと外部検証セットで 0.937 と 0.933 の AUC 値を達成できた。
論文 参考訳(メタデータ) (2024-06-24T08:36:40Z) - AIRIVA: A Deep Generative Model of Adaptive Immune Repertoires [6.918664738267051]
本稿では,TCRレパートリーの低次元,解釈可能,構成的表現を学習し,レパートリーの系統的効果を阻害する適応型免疫レパートリー不変変分オートエンコーダ(AIRIVA)を提案する。
論文 参考訳(メタデータ) (2023-04-26T14:40:35Z) - Exploiting segmentation labels and representation learning to forecast
therapy response of PDAC patients [60.78505216352878]
化学療法に対する腫瘍反応を予測するためのハイブリッドディープニューラルネットワークパイプラインを提案する。
セグメンテーションから分類への表現伝達の組み合わせと、ローカライゼーションと表現学習を利用する。
提案手法は, 合計477個のデータセットを用いて, ROC-AUC 63.7% の処理応答を予測できる, 極めて効率的な手法である。
論文 参考訳(メタデータ) (2022-11-08T11:50:31Z) - Prediction of drug effectiveness in rheumatoid arthritis patients based
on machine learning algorithms [2.5759046095742453]
慢性関節リウマチ(RA)は、患者の免疫系が誤って自身の組織を標的としたときに引き起こされる自己免疫疾患である。
機械学習(ML)は、患者の電子的健康記録のパターンを特定し、患者の結果を改善する最良の臨床治療を予測する可能性がある。
本研究は, 臨床データから情報を取り出すためのデータ処理パイプラインを設計し, 機能的使用のために前処理し, 2) 薬物に対するRA患者の反応を予測し, 分類モデルの性能を評価するためのTNFフレームワークを導入した。
論文 参考訳(メタデータ) (2022-10-14T15:15:37Z) - TCR: A Transformer Based Deep Network for Predicting Cancer Drugs
Response [12.86640026993276]
抗がん剤反応を予測するために,トランスフォーマーを用いたがん薬物応答(TCR)ネットワークを提案する。
注意機構を利用することで、TCRは薬物原子/サブ構造と分子シグネチャの相互作用を効率的に学習することができる。
本研究は,TCRの予測能力と癌薬物の再利用と腫瘍学の精度向上に寄与する可能性を明らかにするものである。
論文 参考訳(メタデータ) (2022-07-10T13:01:54Z) - Metareview-informed Explainable Cytokine Storm Detection during CAR-T
cell Therapy [0.6332429219530602]
サイトカイン放出症候群(Cytokine Release syndrome, CRS)は、キメラ抗原受容体療法の最も重篤な副作用の一つである。
CRSは、患者間で類似性を示す傾向がある特定のサイトカインおよびケモカインプロファイルの分析によって同定できる。
論文 参考訳(メタデータ) (2022-06-20T12:45:57Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
本稿では,不規則なサンプルデータの下で潜在表現をパラメータ化する生成時間対イベントモデルSurvLatent ODEを提案する。
そこで,本モデルでは,事象特異的ハザード関数の形状を指定せずに,複数の競合イベントの生存時間を柔軟に推定する。
SurvLatent ODEは、DVTリスクグループを成層化するために、現在の臨床標準であるKhorana Riskスコアより優れている。
論文 参考訳(メタデータ) (2022-04-20T17:28:08Z) - Disentangled Counterfactual Recurrent Networks for Treatment Effect
Inference over Time [71.30985926640659]
本稿では,DCRN(Disentangled Counterfactual Recurrent Network)を提案する。
時間とともに治療効果の因果構造に完全にインスパイアされたアーキテクチャでは、予測精度と疾患理解が向上する。
実データとシミュレーションデータの両方において,DCRNが処理応答予測の最先端手法より優れていることを示す。
論文 参考訳(メタデータ) (2021-12-07T16:40:28Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
我々は、集中治療室入院の必要性を予測するために、人口統計、バイタルサイン、実験室の所見から、肺不透明度の放射能と非画像の特徴を組み合わせる。
また, 地域性肺炎を含む他の肺疾患にも適用できるが, 地域性肺炎に限らない。
論文 参考訳(メタデータ) (2020-07-20T19:08:50Z) - DTR Bandit: Learning to Make Response-Adaptive Decisions With Low Regret [59.81290762273153]
動的治療体制 (DTR) はパーソナライズされ適応された多段階の治療計画であり、治療決定を個人の初期特徴に適応させ、その後の各段階における中間結果と特徴に適応させる。
本稿では,探索と搾取を慎重にバランスさせることで,遷移モデルと報酬モデルが線形である場合に,速度-最適後悔を実現する新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-05-06T13:03:42Z) - Estimating Counterfactual Treatment Outcomes over Time Through
Adversarially Balanced Representations [114.16762407465427]
時間とともに治療効果を推定するためにCRN(Counterfactual Recurrent Network)を導入する。
CRNは、患者履歴のバランスの取れた表現を構築するために、ドメイン敵のトレーニングを使用する。
本モデルでは, 正解率の予測と適切な治療時期の選択において, 誤差の低減を図っている。
論文 参考訳(メタデータ) (2020-02-10T20:47:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。