ProReason: Multi-Modal Proactive Reasoning with Decoupled Eyesight and Wisdom
- URL: http://arxiv.org/abs/2410.14138v3
- Date: Fri, 30 May 2025 06:54:08 GMT
- Title: ProReason: Multi-Modal Proactive Reasoning with Decoupled Eyesight and Wisdom
- Authors: Jingqi Zhou, Sheng Wang, Jingwei Dong, Kai Liu, Lei Li, Jiahui Gao, Jiyue Jiang, Lingpeng Kong, Chuan Wu,
- Abstract summary: We introduce a novel visual reasoning framework named ProReason.<n>ProReason features decoupled vision-reasoning capabilities and multi-run proactive perception.<n>Our experiments demonstrate that ProReason outperforms existing multi-step reasoning frameworks on various benchmarks.
- Score: 41.369481426130186
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large vision-language models (LVLMs) have witnessed significant progress on visual understanding tasks. However, they often prioritize language knowledge over image information on visual reasoning tasks, incurring performance degradation. To tackle this issue, we first identify the drawbacks of existing solutions (i.e., limited multi-modal reasoning capacities, and insufficient and irrelevant visual descriptions). We then decompose visual reasoning process into two stages: proactive visual perception (i.e., eyesight) and textual reasoning (i.e., wisdom), and introduce a novel visual reasoning framework named ProReason. This framework features decoupled vision-reasoning capabilities and multi-run proactive perception. Briefly, given a multi-modal question, ProReason iterates proactive information collection and reasoning until the answer can be concluded with necessary and sufficient visual descriptions. Notably, the disassociation of capabilities allows seamless integration of existing large language models (LLMs) to compensate for the reasoning deficits of LVLMs. Our extensive experiments demonstrate that ProReason outperforms existing multi-step reasoning frameworks on various benchmarks for both open-source and closed-source models, with the average performance gain reaching 13.2%. Besides, the integration of LLMs allows ProReason to produce high-quality visual reasoning data, which empowers ProReason-distilled models (i.e., ProReason-VL and ProReason-Q3) to achieve superior performance in downstream tasks. Our insights into existing solutions and the decoupled perspective for feasible integration of LLMs illuminate future research on visual reasoning techniques, especially LLM-assisted ones.
Related papers
- Argus Inspection: Do Multimodal Large Language Models Possess the Eye of Panoptes? [14.41230051139575]
This paper introduces Argus Inspection, a multimodal benchmark with two levels of difficulty.<n>We also present the Eye of Panoptes framework, which integrates a binary parametric Sigmoid metric with an indicator function.
arXiv Detail & Related papers (2025-06-03T13:44:14Z) - Can MLLMs Guide Me Home? A Benchmark Study on Fine-Grained Visual Reasoning from Transit Maps [56.76175383189738]
We introduce ReasonMap, a benchmark designed to assess the fine-grained visual understanding and spatial reasoning abilities of MLLMs.<n>ReasonMap encompasses high-resolution transit maps from 30 cities across 13 countries and includes 1,008 question-answer pairs spanning two question types and three templates.<n> Comprehensive evaluations of 15 popular MLLMs, including both base and reasoning variants, reveal a counterintuitive pattern.
arXiv Detail & Related papers (2025-05-24T12:33:52Z) - CausalVLBench: Benchmarking Visual Causal Reasoning in Large Vision-Language Models [10.530681458312412]
Large vision-language models (LVLMs) have shown impressive performance in tasks such as recognition and visual question answering.<n>We introduce a comprehensive causal reasoning benchmark for multi-modal in-context learning from LVLMs.<n>We evaluate the ability of state-of-the-art open-source LVLMs on our causal reasoning tasks across three causal representation learning datasets.
arXiv Detail & Related papers (2025-05-21T00:45:15Z) - VERIFY: A Benchmark of Visual Explanation and Reasoning for Investigating Multimodal Reasoning Fidelity [34.29409506366145]
VERIFY is a benchmark designed to isolate and rigorously evaluate the visual reasoning capabilities of state-of-the-art MLLMs.
Each problem is accompanied by a human-annotated reasoning path, making it the first to provide in-depth evaluation of model decision-making processes.
We propose novel metrics that assess visual reasoning fidelity beyond mere accuracy, highlighting critical imbalances in current model reasoning patterns.
arXiv Detail & Related papers (2025-03-14T16:26:11Z) - Insight-V: Exploring Long-Chain Visual Reasoning with Multimodal Large Language Models [64.1799100754406]
Large Language Models (LLMs) demonstrate enhanced capabilities and reliability by reasoning more.
Despite various efforts to improve LLM reasoning, high-quality long-chain reasoning data and optimized training pipelines still remain inadequately explored in vision-language tasks.
We present Insight-V, an early effort to 1) scalably produce long and robust reasoning data for complex multi-modal tasks, and 2) an effective training pipeline to enhance the reasoning capabilities of MLLMs.
arXiv Detail & Related papers (2024-11-21T18:59:55Z) - Thinking Before Looking: Improving Multimodal LLM Reasoning via Mitigating Visual Hallucination [13.706325901731665]
Multimodal large language models (MLLMs) have advanced the integration of visual and linguistic modalities.
Current approaches like chain of thought (CoT) reasoning have augmented the cognitive capabilities of large language models (LLMs)
But their adaptation to MLLMs is hindered by heightened risks of hallucination in cross-modality comprehension.
arXiv Detail & Related papers (2024-11-15T21:01:37Z) - Enhancing Advanced Visual Reasoning Ability of Large Language Models [20.32900494896848]
Recent advancements in Vision-Language (VL) research have sparked new benchmarks for complex visual reasoning.
We propose Complex Visual Reasoning Large Language Models (CVR-LLM)
Our approach transforms images into detailed, context-aware descriptions using an iterative self-refinement loop.
We also introduce a novel multi-modal in-context learning (ICL) methodology to enhance LLMs' contextual understanding and reasoning.
arXiv Detail & Related papers (2024-09-21T02:10:19Z) - Multimodal Causal Reasoning Benchmark: Challenging Vision Large Language Models to Infer Causal Links Between Siamese Images [19.923665989164387]
We propose a novel Multimodal Causal Reasoning benchmark, namely MuCR, to challenge Large Language Models.
Specifically, we introduce a prompt-driven image synthesis approach to create siamese images with embedded semantic causality and visual cues.
Our extensive experiments reveal that the current state-of-the-art VLLMs are not as skilled at multimodal causal reasoning as we might have hoped.
arXiv Detail & Related papers (2024-08-15T12:04:32Z) - Prism: A Framework for Decoupling and Assessing the Capabilities of VLMs [83.24033574914425]
We present Prism, an innovative framework designed to disentangle the perception and reasoning processes involved in visual question solving.
Prism comprises two distinct stages: a perception stage that utilizes a VLM to extract and articulate visual information in textual form, and a reasoning stage that formulates responses based on the extracted visual information.
Our analytical framework provides several valuable insights, underscoring Prism's potential as a cost-effective solution for vision-language tasks.
arXiv Detail & Related papers (2024-06-20T17:54:03Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
We argue that converging visual context acquisition and logical reasoning is pivotal for tackling visual reasoning tasks.
We propose an innovative multimodal CoT framework, termed Cantor, characterized by a perception-decision architecture.
Our experiments demonstrate the efficacy of the proposed framework, showing significant improvements in multimodal CoT performance.
arXiv Detail & Related papers (2024-04-24T17:59:48Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
Chain-of-Spot (CoS) method is a novel approach that enhances feature extraction by focusing on key regions of interest.
This technique allows LVLMs to access more detailed visual information without altering the original image resolution.
Our empirical findings demonstrate a significant improvement in LVLMs' ability to understand and reason about visual content.
arXiv Detail & Related papers (2024-03-19T17:59:52Z) - Eyes Wide Shut? Exploring the Visual Shortcomings of Multimodal LLMs [50.77984109941538]
Our research reveals that the visual capabilities in recent multimodal LLMs still exhibit systematic shortcomings.
We identify ''CLIP-blind pairs'' - images that CLIP perceives as similar despite their clear visual differences.
We evaluate various CLIP-based vision-and-language models and found a notable correlation between visual patterns that challenge CLIP models and those problematic for multimodal LLMs.
arXiv Detail & Related papers (2024-01-11T18:58:36Z) - See, Think, Confirm: Interactive Prompting Between Vision and Language
Models for Knowledge-based Visual Reasoning [60.43585179885355]
We propose a novel framework named Interactive Prompting Visual Reasoner (IPVR) for few-shot knowledge-based visual reasoning.
IPVR contains three stages, see, think and confirm.
We conduct experiments on a range of knowledge-based visual reasoning datasets.
arXiv Detail & Related papers (2023-01-12T18:59:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.