論文の概要: MultiChartQA: Benchmarking Vision-Language Models on Multi-Chart Problems
- arxiv url: http://arxiv.org/abs/2410.14179v1
- Date: Fri, 18 Oct 2024 05:15:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:26:54.671833
- Title: MultiChartQA: Benchmarking Vision-Language Models on Multi-Chart Problems
- Title(参考訳): MultiChartQA:マルチチャート問題に対するビジョンランゲージモデルのベンチマーク
- Authors: Zifeng Zhu, Mengzhao Jia, Zhihan Zhang, Lang Li, Meng Jiang,
- Abstract要約: チャート関連タスクの既存のベンチマークは、実世界のマルチチャートシナリオの複雑さを捉えるのに不足している。
直接質問応答,並列質問応答,比較推論,シーケンシャル推論の4つの重要な領域でMLLMの能力を評価するベンチマークであるMultiChartQAを紹介する。
本研究は,マルチチャート理解の課題と,この分野での進歩を促進するためのマルチチャートQAの可能性を明らかにするものである。
- 参考スコア(独自算出の注目度): 18.188725200923333
- License:
- Abstract: Multimodal Large Language Models (MLLMs) have demonstrated impressive abilities across various tasks, including visual question answering and chart comprehension, yet existing benchmarks for chart-related tasks fall short in capturing the complexity of real-world multi-chart scenarios. Current benchmarks primarily focus on single-chart tasks, neglecting the multi-hop reasoning required to extract and integrate information from multiple charts, which is essential in practical applications. To fill this gap, we introduce MultiChartQA, a benchmark that evaluates MLLMs' capabilities in four key areas: direct question answering, parallel question answering, comparative reasoning, and sequential reasoning. Our evaluation of a wide range of MLLMs reveals significant performance gaps compared to humans. These results highlight the challenges in multi-chart comprehension and the potential of MultiChartQA to drive advancements in this field. Our code and data are available at https://github.com/Zivenzhu/Multi-chart-QA
- Abstract(参考訳): MLLM(Multimodal Large Language Models)は、視覚的質問応答やチャート理解など、様々なタスクにおいて印象的な能力を示しているが、チャート関連タスクの既存のベンチマークは、実世界のマルチチャートシナリオの複雑さを捉えるのに不足している。
現在のベンチマークは主にシングルチャートタスクに重点を置いており、複数のチャートから情報を抽出して統合するために必要なマルチホップ推論を無視している。
このギャップを埋めるために、直接質問応答、並列質問応答、比較推論、シーケンシャル推論の4つの重要な領域でMLLMの能力を評価するベンチマークであるMultiChartQAを導入する。
MLLMを広範囲に評価した結果,ヒトと比較して大きな性能差がみられた。
これらの結果は、マルチチャート理解の課題と、この分野での進歩を促進するMultiChartQAの可能性を強調している。
私たちのコードとデータはhttps://github.com/Zivenzhu/Multi-chart-QAで公開されています。
関連論文リスト
- Distill Visual Chart Reasoning Ability from LLMs to MLLMs [38.62832112530892]
マルチモーダル大言語モデル(MLLM)における複雑なチャートQ&Aタスクの解決には高度な視覚的推論能力が必要である
我々は,LLMからMLLMへの視覚的推論能力を蒸留するための費用効率,効率的,スケーラブルなデータ合成法であるCode-as-Intermediary Translation (CIT)を提案する。
我々は、テキストベースの合成技術を用いて、チャート作成コードを構築し、3kの推論集約チャートと20kのQ&Aペアを含むデータセットであるReachQAを作成した。
論文 参考訳(メタデータ) (2024-10-24T14:50:42Z) - On Pre-training of Multimodal Language Models Customized for Chart Understanding [83.99377088129282]
本稿では,MLLMのチャート理解を改善するために必要な学習過程について考察する。
詳細なチャート理解に適したMLLMであるCHOPINLLMを紹介する。
論文 参考訳(メタデータ) (2024-07-19T17:58:36Z) - CharXiv: Charting Gaps in Realistic Chart Understanding in Multimodal LLMs [62.84082370758761]
CharXivは、arXiv論文の2,323のチャートを含む総合的な評価スイートである。
品質を確保するために、すべてのチャートと質問は、人間の専門家によって手書きされ、キュレーションされ、検証されます。
その結果、最強のプロプライエタリモデルの推論スキルの間に、かなり過小評価されていたギャップが明らかとなった。
論文 参考訳(メタデータ) (2024-06-26T17:50:11Z) - TinyChart: Efficient Chart Understanding with Visual Token Merging and Program-of-Thoughts Learning [83.58521787193293]
本稿では,3Bパラメータのみを用いたチャート理解のための効率的なMLLMであるTinyChartを提案する。
TinyChartは,1)プログラム・オブ・ソート(PoT)学習戦略による数値計算学習の負担軽減,2)ビジョン・トーケン・マージ・モジュールによる高解像度画像のためのビジョン・トランスフォーマーによって生成される長大な視覚特徴系列の削減という,効率的なチャート理解における2つの課題を克服した。
論文 参考訳(メタデータ) (2024-04-25T14:23:24Z) - ChartX & ChartVLM: A Versatile Benchmark and Foundation Model for Complicated Chart Reasoning [54.82612435284695]
我々は、チャート領域における既製のマルチモーダル言語モデル(MLLM)の能力をベンチマークする。
ChartXは18種類のチャートタイプ,7つのチャートタスク,22のディシプリナトピック,高品質なチャートデータを含むマルチモーダルな評価セットである。
我々は、解釈可能なパターンに強く依存するマルチモーダルタスクに対する新しい視点を提供するため、ChartVLMを開発した。
論文 参考訳(メタデータ) (2024-02-19T14:48:23Z) - ChartAssisstant: A Universal Chart Multimodal Language Model via
Chart-to-Table Pre-training and Multitask Instruction Tuning [54.89249749894061]
ChartAssistantは、ユニバーサルチャートの理解と推論のためのビジョン言語モデルである。
2段階のトレーニングプロセスを経て、チャートとテキストの調整のために、チャートからテーブルへのパースを事前トレーニングする。
実験により, 最先端UniChart法とChartllama法に比較して, 顕著な性能向上が得られた。
論文 参考訳(メタデータ) (2024-01-04T17:51:48Z) - ChartBench: A Benchmark for Complex Visual Reasoning in Charts [36.492851648081405]
MLLM(Multimodal Large Language Models)は画像の理解と生成に優れた能力を示している。
現在のベンチマークでは、限定的なチャートタイプと不適切なメトリクスのため、MLLMのチャート理解を正確に評価することができない。
複雑な視覚的推論によってチャートの理解とデータの信頼性を評価するための総合的なベンチマークであるChartBenchを提案する。
論文 参考訳(メタデータ) (2023-12-26T07:20:55Z) - Do LLMs Work on Charts? Designing Few-Shot Prompts for Chart Question
Answering and Summarization [27.913656283822483]
大規模言語モデル(LLM)は、目に見えないタスクに対して印象的な一般化能力を示している。
本稿では,チャート関連アプリケーションのための LLM を用いたマルチモーダルな複数ショットプロンプトフレームワーク PromptChart を提案する。
3つの異なるチャート関連情報消費タスクに関する実験により、適切に設計されたプロンプトにより、LLMがベンチマーク上で優れることを示す。
論文 参考訳(メタデータ) (2023-12-17T05:13:58Z) - MMC: Advancing Multimodal Chart Understanding with Large-scale Instruction Tuning [48.63002688222462]
グラフの抽象的な構成要素が異なるため、チャートイメージ理解の領域にギャップが残っている。
多様なタスクとチャートタイプをサポートする600kインスタンスからなる大規模マルチモーダルチャートインストラクションデータセットを提案する。
我々は既存のグラフQAベンチマークで最先端性能を実現するLMMであるMultiModal Chart Assistant(textbfMMC-A)を開発した。
論文 参考訳(メタデータ) (2023-11-15T23:36:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。