論文の概要: Combining Hough Transform and Deep Learning Approaches to Reconstruct ECG Signals From Printouts
- arxiv url: http://arxiv.org/abs/2410.14185v1
- Date: Fri, 18 Oct 2024 05:36:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:24:11.011864
- Title: Combining Hough Transform and Deep Learning Approaches to Reconstruct ECG Signals From Printouts
- Title(参考訳): 印刷物からの心電図信号再構成のためのハフ変換と深層学習の併用
- Authors: Felix Krones, Ben Walker, Terry Lyons, Adam Mahdi,
- Abstract要約: この研究は、2024年のGeorge B. Moody PhysioNet Challengeに対する私たちのチームの勝利の貢献を示します。
チャレンジには2つの目標があった: 印刷物から心電図信号を再構成し、それらを心臓病に分類する。
本モデルでは, CV信号対雑音平均比17.02, 隠しセットにおける公式チャレンジスコア12.15を達成し, 競技における第1位を確保した。
- 参考スコア(独自算出の注目度): 2.374912052693646
- License:
- Abstract: This work presents our team's (SignalSavants) winning contribution to the 2024 George B. Moody PhysioNet Challenge. The Challenge had two goals: reconstruct ECG signals from printouts and classify them for cardiac diseases. Our focus was the first task. Despite many ECGs being digitally recorded today, paper ECGs remain common throughout the world. Digitising them could help build more diverse datasets and enable automated analyses. However, the presence of varying recording standards and poor image quality requires a data-centric approach for developing robust models that can generalise effectively. Our approach combines the creation of a diverse training set, Hough transform to rotate images, a U-Net based segmentation model to identify individual signals, and mask vectorisation to reconstruct the signals. We assessed the performance of our models using the 10-fold stratified cross-validation (CV) split of 21,799 recordings proposed by the PTB-XL dataset. On the digitisation task, our model achieved an average CV signal-to-noise ratio of 17.02 and an official Challenge score of 12.15 on the hidden set, securing first place in the competition. Our study shows the challenges of building robust, generalisable, digitisation approaches. Such models require large amounts of resources (data, time, and computational power) but have great potential in diversifying the data available.
- Abstract(参考訳): この研究は、2024年のGeorge B. Moody PhysioNet Challengeで優勝したチーム(SignalSavants)を紹介します。
チャレンジには2つの目標があった: 印刷物から心電図信号を再構成し、それらを心臓病に分類する。
私たちの焦点が最初の課題でした。
今日では多くのECGがデジタル記録されているが、紙ECGは世界中で一般的である。
それらをデジタル化することで、より多様なデータセットを構築し、自動分析を可能にする。
しかし、様々な記録標準の存在と画質の低さは、効果的に一般化できるロバストなモデルを開発する上で、データ中心のアプローチを必要とする。
我々のアプローチは、多様なトレーニングセットの作成、画像を回転させるHough変換、個々の信号を識別するU-Netベースのセグメンテーションモデル、および信号を再構成するためのマスクベクトル化を組み合わせる。
PTB-XLデータセットから提案した21,799枚の記録を10倍層間クロスバリデーション(CV)分割して評価した。
デジタル化タスクでは, CV信号対雑音平均比17.02, 隠蔽集合における公式チャレンジスコア12.15を達成し, 競技における第1位を確保した。
我々の研究は、堅牢で一般化可能なデジタル化アプローチを構築する上での課題を示している。
このようなモデルは大量のリソース(データ、時間、計算能力)を必要とするが、利用可能なデータを多様化する大きな可能性を秘めている。
関連論文リスト
- ECG-Image-Database: A Dataset of ECG Images with Real-World Imaging and Scanning Artifacts; A Foundation for Computerized ECG Image Digitization and Analysis [4.263536786122581]
ECG-Image-Databaseは、ECG時系列データから生成された心電図(ECG)画像の大規模かつ多種多様なコレクションである。
我々は、オープンソースのPythonツールキットであるECG-Image-Kitを使用して、生のECG時系列から12リードのECGプリントアウトのリアルな画像を生成する。
得られたデータセットには35,595個のソフトウェアラベル付きECGイメージが含まれており、幅広い画像アーティファクトと歪みがある。
論文 参考訳(メタデータ) (2024-09-25T04:30:19Z) - ECGrecover: a Deep Learning Approach for Electrocardiogram Signal Completion [1.727597257312416]
完全12誘導ECG信号を不完全部分から再構成するという課題に対処する。
再建問題に対処するために,新しい目的関数を訓練したU-Netアーキテクチャを用いたモデルを提案する。
論文 参考訳(メタデータ) (2024-05-31T15:17:12Z) - AIGIQA-20K: A Large Database for AI-Generated Image Quality Assessment [54.93996119324928]
AIGIQA-20Kとして知られる2万のAIGIと420,000の主観評価を備えた、これまでで最大のAIGI主観的品質データベースを作成します。
このデータベース上でベンチマーク実験を行い、16の主流AIGI品質モデルと人間の知覚との対応性を評価する。
論文 参考訳(メタデータ) (2024-04-04T12:12:24Z) - ECG-Image-Kit: A Synthetic Image Generation Toolbox to Facilitate Deep
Learning-Based Electrocardiogram Digitization [3.4579920352329787]
本稿では,時系列データからリアルなアーティファクトを合成したマルチリードECG画像を生成するオープンソースツールボックスであるECG-Image-Kitを紹介する。
ケーススタディでは、PhyloNet QTデータベースから、ECG-Image-Kitを使用して、21,801個のECGイメージのデータセットを作成しました。
このデータセット上で、従来のコンピュータビジョンとディープニューラルネットワークモデルを組み合わせて、合成画像を時系列データに変換するようにトレーニングしました。
論文 参考訳(メタデータ) (2023-07-04T22:42:55Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
ECGのデライン化のための既存のデータベースは小さく、サイズやそれらが表す病態の配列に不足している。
まず、原データベースから抽出した基本セグメントのプールを与えられたECGトレースを確率的に合成し、その整合性のある合成トレースに配置するための一連のルールを考案した。
第二に、2つの新しいセグメンテーションに基づく損失関数が開発され、これは、正確な数の独立構造の予測を強制し、サンプル数の削減に焦点をあてて、より密接なセグメンテーション境界を創出することを目的としている。
論文 参考訳(メタデータ) (2021-11-25T10:11:41Z) - SE-ECGNet: A Multi-scale Deep Residual Network with
Squeeze-and-Excitation Module for ECG Signal Classification [6.124438924401066]
ECG信号分類タスクのためのマルチスケール深部残差ネットワークを開発しています。
我々は,マルチリード信号を2次元行列として扱うことを提案する。
提案モデルは,mit-bihデータセットでは99.2%,alibabaデータセットでは89.4%のf1-scoreを実現する。
論文 参考訳(メタデータ) (2020-12-10T08:37:44Z) - Attention-Driven Dynamic Graph Convolutional Network for Multi-Label
Image Recognition [53.17837649440601]
本稿では,各画像の特定のグラフを動的に生成するアテンション駆動型動的グラフ畳み込みネットワーク(ADD-GCN)を提案する。
パブリックなマルチラベルベンチマーク実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2020-12-05T10:10:12Z) - Multilabel 12-Lead Electrocardiogram Classification Using Gradient
Boosting Tree Ensemble [64.29529357862955]
我々は,心電図の診断を分類するために,形態や信号処理機能に適合した勾配強化木のアンサンブルを用いたアルゴリズムを構築した。
各リードについて、心拍変動、PQRSTテンプレート形状、全信号波形から特徴を導出する。
各クラスに属するECGインスタンスの確率を予測するため、全12項目の特徴と合わせて、勾配を増す決定ツリーの集合に適合する。
論文 参考訳(メタデータ) (2020-10-21T18:11:36Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
心電図(Electrocardiogram、ECG)は、医学および医療において最も一般的に用いられる診断ツールの1つである。
深層学習法は心電図信号を用いた予測医療タスクにおいて有望な結果を得た。
本稿では、モデリングとアプリケーションの観点から、ECGデータに対するディープラーニング手法の体系的なレビューを行う。
論文 参考訳(メタデータ) (2019-12-28T02:44:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。