論文の概要: AIGIQA-20K: A Large Database for AI-Generated Image Quality Assessment
- arxiv url: http://arxiv.org/abs/2404.03407v1
- Date: Thu, 4 Apr 2024 12:12:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 14:51:30.517014
- Title: AIGIQA-20K: A Large Database for AI-Generated Image Quality Assessment
- Title(参考訳): AI生成画像品質評価のための大規模データベースAIIQA-20K
- Authors: Chunyi Li, Tengchuan Kou, Yixuan Gao, Yuqin Cao, Wei Sun, Zicheng Zhang, Yingjie Zhou, Zhichao Zhang, Weixia Zhang, Haoning Wu, Xiaohong Liu, Xiongkuo Min, Guangtao Zhai,
- Abstract要約: AIGIQA-20Kとして知られる2万のAIGIと420,000の主観評価を備えた、これまでで最大のAIGI主観的品質データベースを作成します。
このデータベース上でベンチマーク実験を行い、16の主流AIGI品質モデルと人間の知覚との対応性を評価する。
- 参考スコア(独自算出の注目度): 54.93996119324928
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With the rapid advancements in AI-Generated Content (AIGC), AI-Generated Images (AIGIs) have been widely applied in entertainment, education, and social media. However, due to the significant variance in quality among different AIGIs, there is an urgent need for models that consistently match human subjective ratings. To address this issue, we organized a challenge towards AIGC quality assessment on NTIRE 2024 that extensively considers 15 popular generative models, utilizing dynamic hyper-parameters (including classifier-free guidance, iteration epochs, and output image resolution), and gather subjective scores that consider perceptual quality and text-to-image alignment altogether comprehensively involving 21 subjects. This approach culminates in the creation of the largest fine-grained AIGI subjective quality database to date with 20,000 AIGIs and 420,000 subjective ratings, known as AIGIQA-20K. Furthermore, we conduct benchmark experiments on this database to assess the correspondence between 16 mainstream AIGI quality models and human perception. We anticipate that this large-scale quality database will inspire robust quality indicators for AIGIs and propel the evolution of AIGC for vision. The database is released on https://www.modelscope.cn/datasets/lcysyzxdxc/AIGCQA-30K-Image.
- Abstract(参考訳): AIGC(AI-Generated Content)の急速な進歩に伴い、AIGI(AI-Generated Images)はエンターテイメント、教育、ソーシャルメディアに広く応用されている。
しかし、異なるAIGI間で品質が著しく異なるため、人間の主観的評価に一貫して適合するモデルが緊急に必要となる。
NTIRE 2024におけるAIGC品質評価の課題は、ダイナミックなハイパーパラメータ(分類自由誘導、反復エポック、出力画像解像度を含む)を活用し、21人の被験者を包括的に含む知覚的品質とテキスト・ツー・イメージのアライメントを考慮した主観的スコアを収集することである。
このアプローチは、これまでに2万のAIGIと420,000の主観評価(AIIGIQA-20Kとして知られる)で、最もきめ細かなAIGI主観的品質データベースの作成に成功している。
さらに、本データベース上でベンチマーク実験を行い、16の主流AIGI品質モデルと人間の知覚との対応性を評価する。
我々は、この大規模品質データベースがAIGIの堅牢な品質指標を刺激し、ビジョンのためのAIGCの進化を促進することを期待する。
データベースはhttps://www.modelscope.cn/datasets/lcysyzxdxc/AIGCQA-30K-Imageで公開されている。
関連論文リスト
- A-Bench: Are LMMs Masters at Evaluating AI-generated Images? [78.3699767628502]
A-Benchは、マルチモーダルモデル(LMM)がAI生成画像(AIGI)を評価するマスターであるかどうかを診断するために設計されたベンチマークである。
最終的に、16のテキスト・ツー・イメージモデルの2,864のAIGIがサンプリングされ、それぞれが人間の専門家によって注釈付けされた質問回答と組み合わせられ、18のLMMでテストされる。
論文 参考訳(メタデータ) (2024-06-05T08:55:02Z) - Understanding and Evaluating Human Preferences for AI Generated Images with Instruction Tuning [58.41087653543607]
我々はまず,AIGCIQA2023+と呼ばれるAIGIのための画像品質評価(IQA)データベースを構築した。
本稿では,AIGIに対する人間の嗜好を評価するためのMINT-IQAモデルを提案する。
論文 参考訳(メタデータ) (2024-05-12T17:45:11Z) - PKU-AIGIQA-4K: A Perceptual Quality Assessment Database for Both Text-to-Image and Image-to-Image AI-Generated Images [1.5265677582796984]
我々はPKU-AIGIQA-4Kという名前のテキスト・ツー・イメージAIGIとイメージ・ツー・イメージAIGIの両方を対象とした大規模な知覚品質評価データベースを構築した。
本研究では,非参照法NR-AIGCIQA,フル参照法FR-AIGCIQA,部分参照法PR-AIGCIQAを含む事前学習モデルに基づく3つの画像品質評価手法を提案する。
論文 参考訳(メタデータ) (2024-04-29T03:57:43Z) - Large Multi-modality Model Assisted AI-Generated Image Quality Assessment [53.182136445844904]
本稿では,AI生成画像品質評価モデル(MA-AGIQA)を提案する。
セマンティックインフォームドガイダンスを使用して意味情報を感知し、慎重に設計されたテキストプロンプトを通してセマンティックベクターを抽出する。
最先端のパフォーマンスを実現し、AI生成画像の品質を評価する上で優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-04-27T02:40:36Z) - AIGCOIQA2024: Perceptual Quality Assessment of AI Generated Omnidirectional Images [70.42666704072964]
我々はAI生成の全方位画像IQAデータベースAIIGCOIQA2024を構築した。
3つの視点から人間の視覚的嗜好を評価するために、主観的IQA実験を行った。
我々は,データベース上での最先端IQAモデルの性能を評価するためのベンチマーク実験を行った。
論文 参考訳(メタデータ) (2024-04-01T10:08:23Z) - PKU-I2IQA: An Image-to-Image Quality Assessment Database for AI
Generated Images [1.6031185986328562]
我々はPKU-I2IQAという人間の知覚に基づく画像から画像へのAIGCIQAデータベースを構築した。
本研究では,非参照画像品質評価法に基づくNR-AIGCIQAとフル参照画像品質評価法に基づくFR-AIGCIQAの2つのベンチマークモデルを提案する。
論文 参考訳(メタデータ) (2023-11-27T05:53:03Z) - AIGCIQA2023: A Large-scale Image Quality Assessment Database for AI
Generated Images: from the Perspectives of Quality, Authenticity and
Correspondence [42.85549933048976]
100プロンプトを用いて6つの最先端テキスト画像生成モデルに基づいて2000以上の画像を生成する。
これらの画像に基づいて、各画像に対する人間の視覚的嗜好を3つの視点から評価する主観的な実験を行った。
構築したデータベース上で,いくつかの最先端IQAメトリクスの性能を評価するためのベンチマーク実験を行った。
論文 参考訳(メタデータ) (2023-07-01T03:30:31Z) - AGIQA-3K: An Open Database for AI-Generated Image Quality Assessment [62.8834581626703]
我々はこれまでに最も包括的な主観的品質データベース AGIQA-3K を構築している。
このデータベース上でベンチマーク実験を行い、現在の画像品質評価(IQA)モデルと人間の知覚との整合性を評価する。
我々は、AGIQA-3Kの微粒な主観的スコアが、その後のAGI品質モデルにヒトの主観的知覚機構に適合するよう促すと信じている。
論文 参考訳(メタデータ) (2023-06-07T18:28:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。