Text-to-Image Representativity Fairness Evaluation Framework
- URL: http://arxiv.org/abs/2410.14201v1
- Date: Fri, 18 Oct 2024 06:31:57 GMT
- Title: Text-to-Image Representativity Fairness Evaluation Framework
- Authors: Asma Yamani, Malak Baslyman,
- Abstract summary: We propose Text-to-Image (TTI) Representativity Fairness Evaluation Framework.
In this framework, we evaluate three aspects of a TTI system; diversity, inclusion, and quality.
The evaluation of our framework on Stable Diffusion shows that the framework can effectively capture the bias in TTI systems.
- Score: 0.42970700836450487
- License:
- Abstract: Text-to-Image generative systems are progressing rapidly to be a source of advertisement and media and could soon serve as image searches or artists. However, there is a significant concern about the representativity bias these models embody and how these biases can propagate in the social fabric after fine-tuning them. Therefore, continuously monitoring and evaluating these models for fairness is important. To address this issue, we propose Text-to-Image (TTI) Representativity Fairness Evaluation Framework. In this framework, we evaluate three aspects of a TTI system; diversity, inclusion, and quality. For each aspect, human-based and model-based approaches are proposed and evaluated for their ability to capture the bias and whether they can substitute each other. The framework starts by suggesting the prompts for generating the images for the evaluation based on the context and the sensitive attributes under study. Then the three aspects are evaluated using the proposed approaches. Based on the evaluation, a decision is made regarding the representativity bias within the TTI system. The evaluation of our framework on Stable Diffusion shows that the framework can effectively capture the bias in TTI systems. The results also confirm that our proposed model based-approaches can substitute human-based approaches in three out of four components with high correlation, which could potentially reduce costs and automate the process. The study suggests that continual learning of the model on more inclusive data across disadvantaged minorities such as Indians and Middle Easterners is essential to mitigate current stereotyping and lack of inclusiveness.
Related papers
- Bias Begets Bias: The Impact of Biased Embeddings on Diffusion Models [0.0]
Text-to-Image (TTI) systems have come under increased scrutiny for social biases.
We investigate embedding spaces as a source of bias for TTI models.
We find that biased multimodal embeddings like CLIP can result in lower alignment scores for representationally balanced TTI models.
arXiv Detail & Related papers (2024-09-15T01:09:55Z) - Six-CD: Benchmarking Concept Removals for Benign Text-to-image Diffusion Models [58.74606272936636]
Text-to-image (T2I) diffusion models have shown exceptional capabilities in generating images that closely correspond to textual prompts.
The models could be exploited for malicious purposes, such as generating images with violence or nudity, or creating unauthorized portraits of public figures in inappropriate contexts.
concept removal methods have been proposed to modify diffusion models to prevent the generation of malicious and unwanted concepts.
arXiv Detail & Related papers (2024-06-21T03:58:44Z) - Can Prompt Modifiers Control Bias? A Comparative Analysis of Text-to-Image Generative Models [8.419004940268023]
This study examines the presence and manipulation of societal biases in leading text-to-image models: Stable Diffusion, DALL-E 3, and Adobe Firefly.
Our findings reveal the challenges and potential of prompt engineering in controlling biases, highlighting the critical need for ethical AI development.
This work advances AI ethics by not only revealing the nuanced dynamics of bias in text-to-image generation models but also by offering a novel framework for future research in controlling bias.
arXiv Detail & Related papers (2024-06-09T00:54:57Z) - TIBET: Identifying and Evaluating Biases in Text-to-Image Generative Models [22.076898042211305]
We propose a general approach to study and quantify a broad spectrum of biases, for any TTI model and for any prompt.
Our approach automatically identifies potential biases that might be relevant to the given prompt, and measures those biases.
We show that our method is uniquely capable of explaining complex multi-dimensional biases through semantic concepts.
arXiv Detail & Related papers (2023-12-03T02:31:37Z) - Evaluating the Fairness of Discriminative Foundation Models in Computer
Vision [51.176061115977774]
We propose a novel taxonomy for bias evaluation of discriminative foundation models, such as Contrastive Language-Pretraining (CLIP)
We then systematically evaluate existing methods for mitigating bias in these models with respect to our taxonomy.
Specifically, we evaluate OpenAI's CLIP and OpenCLIP models for key applications, such as zero-shot classification, image retrieval and image captioning.
arXiv Detail & Related papers (2023-10-18T10:32:39Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
We present a comprehensive survey of bias evaluation and mitigation techniques for large language models (LLMs)
We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing.
We then unify the literature by proposing three intuitive, two for bias evaluation, and one for mitigation.
arXiv Detail & Related papers (2023-09-02T00:32:55Z) - Gender Biases in Automatic Evaluation Metrics for Image Captioning [87.15170977240643]
We conduct a systematic study of gender biases in model-based evaluation metrics for image captioning tasks.
We demonstrate the negative consequences of using these biased metrics, including the inability to differentiate between biased and unbiased generations.
We present a simple and effective way to mitigate the metric bias without hurting the correlations with human judgments.
arXiv Detail & Related papers (2023-05-24T04:27:40Z) - Stable Bias: Analyzing Societal Representations in Diffusion Models [72.27121528451528]
We propose a new method for exploring the social biases in Text-to-Image (TTI) systems.
Our approach relies on characterizing the variation in generated images triggered by enumerating gender and ethnicity markers in the prompts.
We leverage this method to analyze images generated by 3 popular TTI systems and find that while all of their outputs show correlations with US labor demographics, they also consistently under-represent marginalized identities to different extents.
arXiv Detail & Related papers (2023-03-20T19:32:49Z) - DeAR: Debiasing Vision-Language Models with Additive Residuals [5.672132510411465]
Large pre-trained vision-language models (VLMs) provide rich, adaptable image and text representations.
These models suffer from societal biases owing to the skewed distribution of various identity groups in the training data.
We present DeAR, a novel debiasing method that learns additive residual image representations to offset the original representations.
arXiv Detail & Related papers (2023-03-18T14:57:43Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
We argue that automated counterfactual generation should regard several aspects of the produced adversarial instances.
We present a novel framework for the generation of counterfactual examples.
arXiv Detail & Related papers (2022-05-20T15:02:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.