G-NeuroDAVIS: A Neural Network model for generalized embedding, data visualization and sample generation
- URL: http://arxiv.org/abs/2410.14223v1
- Date: Fri, 18 Oct 2024 07:14:08 GMT
- Title: G-NeuroDAVIS: A Neural Network model for generalized embedding, data visualization and sample generation
- Authors: Chayan Maitra, Rajat K. De,
- Abstract summary: A novel generative model, called G-NeuroDAVIS, is capable of visualizing high-dimensional data through a generalized embedding.
G-NeuroDAVIS can be trained in both supervised and unsupervised settings.
- Score: 0.0
- License:
- Abstract: Visualizing high-dimensional datasets through a generalized embedding has been a challenge for a long time. Several methods have shown up for the same, but still, they have not been able to generate a generalized embedding, which not only can reveal the hidden patterns present in the data but also generate realistic high-dimensional samples from it. Motivated by this aspect, in this study, a novel generative model, called G-NeuroDAVIS, has been developed, which is capable of visualizing high-dimensional data through a generalized embedding, and thereby generating new samples. The model leverages advanced generative techniques to produce high-quality embedding that captures the underlying structure of the data more effectively than existing methods. G-NeuroDAVIS can be trained in both supervised and unsupervised settings. We rigorously evaluated our model through a series of experiments, demonstrating superior performance in classification tasks, which highlights the robustness of the learned representations. Furthermore, the conditional sample generation capability of the model has been described through qualitative assessments, revealing a marked improvement in generating realistic and diverse samples. G-NeuroDAVIS has outperformed the Variational Autoencoder (VAE) significantly in multiple key aspects, including embedding quality, classification performance, and sample generation capability. These results underscore the potential of our generative model to serve as a powerful tool in various applications requiring high-quality data generation and representation learning.
Related papers
- SGIA: Enhancing Fine-Grained Visual Classification with Sequence Generative Image Augmentation [16.642582574494742]
We introduce Sequence Generative Image Augmentation (SGIA) for augmenting Fine-Grained Visual Classification (FGVC) datasets.
Our method features a unique Bridging Transfer Learning process, designed to minimize the domain gap between real and synthetically augmented data.
Our work sets a new benchmark and outperforms the previous state-of-the-art models in classification accuracy by 0.5% for the CUB-200-2011 dataset.
arXiv Detail & Related papers (2024-12-09T01:39:46Z) - A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
In computer vision, it is well-known that a lack of data diversity will impair model performance.
We propose a simple yet effective data augmentation approach by leveraging advancements in generative models.
Background augmentation, in particular, significantly improves the models' robustness and generalization capabilities.
arXiv Detail & Related papers (2024-08-01T07:40:00Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - Can Generative Models Improve Self-Supervised Representation Learning? [0.7999703756441756]
We introduce a framework that enriches the self-supervised learning (SSL) paradigm by utilizing generative models to produce semantically consistent image augmentations.
Our results show that our framework significantly enhances the quality of learned visual representations by up to 10% Top-1 accuracy in downstream tasks.
arXiv Detail & Related papers (2024-03-09T17:17:07Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
We propose a novel data collection methodology that synchronously synthesizes images and dialogues for visual instruction tuning.
This approach harnesses the power of generative models, marrying the abilities of ChatGPT and text-to-image generative models.
Our research includes comprehensive experiments conducted on various datasets.
arXiv Detail & Related papers (2023-08-20T12:43:52Z) - Data-Free Adversarial Knowledge Distillation for Graph Neural Networks [62.71646916191515]
We propose the first end-to-end framework for data-free adversarial knowledge distillation on graph structured data (DFAD-GNN)
To be specific, our DFAD-GNN employs a generative adversarial network, which mainly consists of three components: a pre-trained teacher model and a student model are regarded as two discriminators, and a generator is utilized for deriving training graphs to distill knowledge from the teacher model into the student model.
Our DFAD-GNN significantly surpasses state-of-the-art data-free baselines in the graph classification task.
arXiv Detail & Related papers (2022-05-08T08:19:40Z) - Guiding Generative Language Models for Data Augmentation in Few-Shot
Text Classification [59.698811329287174]
We leverage GPT-2 for generating artificial training instances in order to improve classification performance.
Our results show that fine-tuning GPT-2 in a handful of label instances leads to consistent classification improvements.
arXiv Detail & Related papers (2021-11-17T12:10:03Z) - Improving the Performance of Fine-Grain Image Classifiers via Generative
Data Augmentation [0.5161531917413706]
We develop Data Augmentation from Proficient Pre-Training of Robust Generative Adrial Networks (DAPPER GAN)
DAPPER GAN is an ML analytics support tool that automatically generates novel views of training images.
We experimentally evaluate this technique on the Stanford Cars dataset, demonstrating improved vehicle make and model classification accuracy.
arXiv Detail & Related papers (2020-08-12T15:29:11Z) - Generative Adversarial Networks (GANs): An Overview of Theoretical
Model, Evaluation Metrics, and Recent Developments [9.023847175654602]
Generative Adversarial Network (GAN) is an effective method to produce samples of large-scale data distribution.
GANs provide an appropriate way to learn deep representations without widespread use of labeled training data.
In GANs, the generative model is estimated via a competitive process where the generator and discriminator networks are trained simultaneously.
arXiv Detail & Related papers (2020-05-27T05:56:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.