Generative Fuzzy System for Sequence Generation
- URL: http://arxiv.org/abs/2411.13867v1
- Date: Thu, 21 Nov 2024 06:03:25 GMT
- Title: Generative Fuzzy System for Sequence Generation
- Authors: Hailong Yang, Zhaohong Deng, Wei Zhang, Zhuangzhuang Zhao, Guanjin Wang, Kup-sze Choi,
- Abstract summary: We introduce the fuzzy system, a classical modeling method that combines data and knowledge-driven mechanisms, to generative tasks.
We propose an end-to-end GenFS-based model for sequence generation, called FuzzyS2S.
A series of experimental studies were conducted on 12 datasets, covering three distinct categories of generative tasks.
- Score: 16.20988290308979
- License:
- Abstract: Generative Models (GMs), particularly Large Language Models (LLMs), have garnered significant attention in machine learning and artificial intelligence for their ability to generate new data by learning the statistical properties of training data and creating data that resemble the original. This capability offers a wide range of applications across various domains. However, the complex structures and numerous model parameters of GMs make the input-output processes opaque, complicating the understanding and control of outputs. Moreover, the purely data-driven learning mechanism limits GM's ability to acquire broader knowledge. There remains substantial potential for enhancing the robustness and generalization capabilities of GMs. In this work, we introduce the fuzzy system, a classical modeling method that combines data and knowledge-driven mechanisms, to generative tasks. We propose a novel Generative Fuzzy System framework, named GenFS, which integrates the deep learning capabilities of GM with the interpretability and dual-driven mechanisms of fuzzy systems. Specifically, we propose an end-to-end GenFS-based model for sequence generation, called FuzzyS2S. A series of experimental studies were conducted on 12 datasets, covering three distinct categories of generative tasks: machine translation, code generation, and summary generation. The results demonstrate that FuzzyS2S outperforms the Transformer in terms of accuracy and fluency. Furthermore, it exhibits better performance on some datasets compared to state-of-the-art models T5 and CodeT5.
Related papers
- G-NeuroDAVIS: A Neural Network model for generalized embedding, data visualization and sample generation [0.0]
A novel generative model, called G-NeuroDAVIS, is capable of visualizing high-dimensional data through a generalized embedding.
G-NeuroDAVIS can be trained in both supervised and unsupervised settings.
arXiv Detail & Related papers (2024-10-18T07:14:08Z) - Knowledge-Driven Feature Selection and Engineering for Genotype Data with Large Language Models [35.084222907099644]
We develop FREEFORM, Free-flow Reasoning and Ensembling for Enhanced Feature Output and Robust Modeling.
FreeFORM is available as open-source framework at GitHub: https://github.com/PennShenLab/FREEFORM.
arXiv Detail & Related papers (2024-10-02T17:53:08Z) - Recommendation with Generative Models [35.029116616023586]
Generative models are AI models capable of creating new instances of data by learning and sampling from their statistical distributions.
These models have applications across various domains, such as image generation, text synthesis, and music composition.
In recommender systems, generative models, referred to as Gen-RecSys, improve the accuracy and diversity of recommendations.
arXiv Detail & Related papers (2024-09-18T18:29:15Z) - UniGen: A Unified Framework for Textual Dataset Generation Using Large Language Models [88.16197692794707]
UniGen is a comprehensive framework designed to produce diverse, accurate, and highly controllable datasets.
To augment data diversity, UniGen incorporates an attribute-guided generation module and a group checking feature.
Extensive experiments demonstrate the superior quality of data generated by UniGen.
arXiv Detail & Related papers (2024-06-27T07:56:44Z) - DiverGen: Improving Instance Segmentation by Learning Wider Data Distribution with More Diverse Generative Data [48.31817189858086]
We argue that generative data can expand the data distribution that the model can learn, thus mitigating overfitting.
We find that DiverGen significantly outperforms the strong model X-Paste, achieving +1.1 box AP and +1.1 mask AP across all categories, and +1.9 box AP and +2.5 mask AP for rare categories.
arXiv Detail & Related papers (2024-05-16T15:30:18Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - 3DG: A Framework for Using Generative AI for Handling Sparse Learner
Performance Data From Intelligent Tutoring Systems [22.70004627901319]
We introduce the 3DG framework (3-Dimensional tensor for Densification and Generation), a novel approach combining tensor factorization with advanced generative models.
The framework effectively generated scalable, personalized simulations of learning performance.
arXiv Detail & Related papers (2024-01-29T22:34:01Z) - Genixer: Empowering Multimodal Large Language Models as a Powerful Data Generator [63.762209407570715]
Genixer is a comprehensive data generation pipeline consisting of four key steps.
A synthetic VQA-like dataset trained with LLaVA1.5 enhances performance on 10 out of 12 multimodal benchmarks.
MLLMs trained with task-specific datasets can surpass GPT-4V in generating complex instruction tuning data.
arXiv Detail & Related papers (2023-12-11T09:44:41Z) - Quantum Generative Modeling of Sequential Data with Trainable Token
Embedding [0.0]
A quantum-inspired generative model known as the Born machines have shown great advancements in learning classical and quantum data.
We generalize the embedding method into trainable quantum measurement operators that can be simultaneously honed with MPS.
Our study indicated that combined with trainable embedding, Born machines can exhibit better performance and learn deeper correlations from the dataset.
arXiv Detail & Related papers (2023-11-08T22:56:37Z) - TSGM: A Flexible Framework for Generative Modeling of Synthetic Time Series [61.436361263605114]
Time series data are often scarce or highly sensitive, which precludes the sharing of data between researchers and industrial organizations.
We introduce Time Series Generative Modeling (TSGM), an open-source framework for the generative modeling of synthetic time series.
arXiv Detail & Related papers (2023-05-19T10:11:21Z) - GenNI: Human-AI Collaboration for Data-Backed Text Generation [102.08127062293111]
Table2Text systems generate textual output based on structured data utilizing machine learning.
GenNI (Generation Negotiation Interface) is an interactive visual system for high-level human-AI collaboration in producing descriptive text.
arXiv Detail & Related papers (2021-10-19T18:07:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.