論文の概要: Graph Neural Patching for Cold-Start Recommendations
- arxiv url: http://arxiv.org/abs/2410.14241v1
- Date: Fri, 18 Oct 2024 07:44:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 12:31:06.370983
- Title: Graph Neural Patching for Cold-Start Recommendations
- Title(参考訳): コールドスタートレコメンデーションのためのグラフニューラルパッチング
- Authors: Hao Chen, Yu Yang, Yuanchen Bei, Zefan Wang, Yue Xu, Feiran Huang,
- Abstract要約: コールドスタートレコメンデーション(GNP)のためのグラフニューラルパッチについて紹介する。
GNPは2つの機能を持つカスタマイズされたGNNフレームワークである。GWarmerは、既存の温かいユーザ/イベントの協調シグナルをモデリングし、Patching Networksは、GWarmerのコールドスタートレコメンデーションのパフォーマンスをシミュレートし、拡張する。
3つのベンチマークデータセットに対する大規模な実験は、温かみと寒さの両方のユーザ/イテムを推奨するGNPの優位性を確認している。
- 参考スコア(独自算出の注目度): 16.08395433358279
- License:
- Abstract: The cold start problem in recommender systems remains a critical challenge. Current solutions often train hybrid models on auxiliary data for both cold and warm users/items, potentially degrading the experience for the latter. This drawback limits their viability in practical scenarios where the satisfaction of existing warm users/items is paramount. Although graph neural networks (GNNs) excel at warm recommendations by effective collaborative signal modeling, they haven't been effectively leveraged for the cold-start issue within a user-item graph, which is largely due to the lack of initial connections for cold user/item entities. Addressing this requires a GNN adept at cold-start recommendations without sacrificing performance for existing ones. To this end, we introduce Graph Neural Patching for Cold-Start Recommendations (GNP), a customized GNN framework with dual functionalities: GWarmer for modeling collaborative signal on existing warm users/items and Patching Networks for simulating and enhancing GWarmer's performance on cold-start recommendations. Extensive experiments on three benchmark datasets confirm GNP's superiority in recommending both warm and cold users/items.
- Abstract(参考訳): レコメンデーションシステムのコールドスタート問題は依然として重要な課題である。
現在のソリューションは、コールドデータとウォームユーザー/イテムの両方の補助データでハイブリッドモデルをトレーニングし、後者のエクスペリエンスを劣化させる可能性がある。
この欠点は、既存の温かいユーザ/イテムの満足度が最重要である現実的なシナリオにおける生存可能性を制限する。
グラフニューラルネットワーク(GNN)は、効果的なコラボレーティブなシグナルモデリングによる温かいレコメンデーションに優れていますが、ユーザ-テムグラフ内のコールドスタート問題には有効に活用されていません。
これに対応するには、GNNは、既存のもののパフォーマンスを犠牲にすることなく、コールドスタートレコメンデーションに適応する必要がある。
この目的のために、我々は、GWarmer for Cold-Start Recommendations (GNP: Graph Neural Patching for Cold-Start Recommendations)という、2つの機能を持つカスタマイズされたGNNフレームワークを紹介した。
3つのベンチマークデータセットに対する大規模な実験は、温かみと寒さの両方のユーザ/イテムを推奨するGNPの優位性を確認している。
関連論文リスト
- DFGNN: Dual-frequency Graph Neural Network for Sign-aware Feedback [51.72177873832969]
本稿では,周波数フィルタの観点から正負のフィードバックをモデル化する新しいモデルを提案する。
実世界のデータセットについて広範な実験を行い、提案モデルの有効性を実証する。
論文 参考訳(メタデータ) (2024-05-24T07:07:41Z) - Node Duplication Improves Cold-start Link Prediction [52.917775253887264]
グラフニューラルネットワーク(GNN)は、グラフ機械学習において顕著である。
近年の研究では、GNNは低次ノードで良い結果を出すのに苦労していることが示されている。
我々はNodeDupと呼ばれるシンプルだが驚くほど効果的な拡張手法を提案する。
論文 参考訳(メタデータ) (2024-02-15T05:07:39Z) - Cold & Warm Net: Addressing Cold-Start Users in Recommender Systems [10.133475523630139]
コールドスタートレコメンデーションは、レコメンダシステム(RS)が直面する大きな課題の1つです。
本稿では,コールドスタートユーザとウォームアップユーザをそれぞれモデル化する専門家モデルに基づいて,コールド&ウォームネットを提案する。
提案モデルはまた,産業用ショートビデオプラットフォーム上に展開され,アプリドウェル時間とユーザ保持率の大幅な向上を実現している。
論文 参考訳(メタデータ) (2023-09-27T13:31:43Z) - GPatch: Patching Graph Neural Networks for Cold-Start Recommendations [20.326139541161194]
コールドスタートはレコメンデータシステムにおいて不可欠で永続的な問題です。
最先端のソリューションは、コールドスタートと既存のユーザ/イテムの両方のためのハイブリッドモデルのトレーニングに依存しています。
本稿では,2つの別個のコンポーネントを含むGNNベースのフレームワーク(GPatch)を提案する。
論文 参考訳(メタデータ) (2022-09-25T13:16:39Z) - Sparsity Regularization For Cold-Start Recommendation [7.848143873095096]
ユーザ人口統計とユーザ嗜好を組み合わせることで,ユーザベクタのための新しい表現を導入する。
我々は,スパースユーザ・購入行動を利用したコールド・スタート・レコメンデーションのための新しいスパース・逆モデルSRLGANを開発した。
SRLGANを2つの一般的なデータセットで評価し、最先端の結果を示す。
論文 参考訳(メタデータ) (2022-01-26T02:28:08Z) - A Multi-Strategy based Pre-Training Method for Cold-Start Recommendation [28.337475919795008]
コールドスタート問題はレコメンデーションタスクの根本的な課題である。
グラフニューラルネットワーク(GNN)モデルにおける最近の自己教師付き学習(SSL)であるPT-GNNは、コールドスタート埋め込みを再構築するためにGNNモデルを事前訓練する。
本稿では,PT-GNNをモデルアーキテクチャやプレテキストタスクの観点から拡張する,マルチストラテジーに基づく冷間開始推薦(MPT)のための事前学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-04T08:11:55Z) - Cold Brew: Distilling Graph Node Representations with Incomplete or
Missing Neighborhoods [69.13371028670153]
本稿では,SCS(Strict Cold Start)問題に対する誘導型GNNの有効性を検討するために,FCR(Feature-Contribution ratio)を導入する。
実験により,FCRはグラフデータセットの様々な成分の寄与を阻害し,コールドブリューの優れた性能を示す。
論文 参考訳(メタデータ) (2021-11-08T21:29:25Z) - Learning to Learn a Cold-start Sequential Recommender [70.5692886883067]
コールドスタート勧告は、現代のオンラインアプリケーションにおいて緊急の問題である。
メタ学習に基づくコールドスタートシーケンシャルレコメンデーションフレームワークMetaCSRを提案する。
MetaCSRは、通常のユーザの行動から共通のパターンを学ぶ能力を持っている。
論文 参考訳(メタデータ) (2021-10-18T08:11:24Z) - Privileged Graph Distillation for Cold Start Recommendation [57.918041397089254]
レコメンデーションシステムにおけるコールドスタートの問題は、歴史的相互作用の記録のない属性に基づいて新しいユーザー(イテム)に推奨することである。
特権グラフ蒸留モデル(PGD)を提案する。
提案手法は,新規ユーザ,新規ユーザ,新規ユーザを対象とする異なるコールドスタートシナリオに適用可能である。
論文 参考訳(メタデータ) (2021-05-31T14:05:27Z) - Joint Training Capsule Network for Cold Start Recommendation [64.35879555545749]
本稿では,コールドスタート推薦タスクのための新しいニューラルネットワーク,ジョイントトレーニングカプセルネットワーク(JTCN)を提案する。
低レベルのインタラクション履歴から高レベルのユーザ嗜好を集約するために、注意深いカプセル層を提案する。
2つの公開データセットの実験では、提案モデルの有効性が示されている。
論文 参考訳(メタデータ) (2020-05-23T04:27:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。